论文标题

与连续时间的经典和量子步行的链接预测

Link prediction with continuous-time classical and quantum walks

论文作者

Goldsmith, Mark, García-Pérez, Guillermo, Malmi, Joonas, Rossi, Matteo A. C., Saarinen, Harto, Maniscalco, Sabrina

论文摘要

蛋白质 - 蛋白质相互作用(PPI)网络由生物体的蛋白质之间的物理和/或功能相互作用组成。由于用于形成PPI网络的生物物理和高通量方法是昂贵的,耗时的,而且通常包含不准确性,因此所得的网络通常不完整。为了推断这些网络中缺失的相互作用,我们提出了基于连续的经典和量子随机步行的新型链接预测方法。在量子步行的情况下,我们检查了网络邻接和拉普拉斯矩阵的用法,以控制步行动力学。我们根据相应的过渡概率定义得分函数,并在四个现实世界PPI数据集上执行测试。我们的结果表明,使用网络邻接矩阵的连续时间经典随机步行和量子步行可以成功预测缺失的蛋白质 - 蛋白质相互作用,并且性能与艺术的状态媲美。

Protein-protein interaction (PPI) networks consist of the physical and/or functional interactions between the proteins of an organism. Since the biophysical and high-throughput methods used to form PPI networks are expensive, time-consuming, and often contain inaccuracies, the resulting networks are usually incomplete. In order to infer missing interactions in these networks, we propose a novel class of link prediction methods based on continuous-time classical and quantum random walks. In the case of quantum walks, we examine the usage of both the network adjacency and Laplacian matrices for controlling the walk dynamics. We define a score function based on the corresponding transition probabilities and perform tests on four real-world PPI datasets. Our results show that continuous-time classical random walks and quantum walks using the network adjacency matrix can successfully predict missing protein-protein interactions, with performance rivalling the state of the art.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源