论文标题

KGXBoard:可解释的互动排行榜,用于评估知识图完成模型

KGxBoard: Explainable and Interactive Leaderboard for Evaluation of Knowledge Graph Completion Models

论文作者

Widjaja, Haris, Gashteovski, Kiril, Rim, Wiem Ben, Liu, Pengfei, Malon, Christopher, Ruffinelli, Daniel, Lawrence, Carolin, Neubig, Graham

论文摘要

知识图(kgs)以(头,谓词,尾部) - 轨道的形式存储信息。为了增强具有新知识的公斤,研究人员提出了诸如链接预测之类的KG完成(KGC)任务的模型;即回答(H; P;?)或(?; P; t)查询。这种模型通常通过持有测试集的平均指标进行评估。尽管对于跟踪进度有用,但平均单分数指标无法透露模型所学或未能学习的内容。为了解决这个问题,我们提出了KGXBoard:一个交互式框架,用于对有意义的数据子集进行精细粒度评估,每个框架都测试了KGC模型的个人和可解释功能。在我们的实验中,我们强调了使用KGXBoard发现的发现,这是无法通过标准平均单分数指标来检测的。

Knowledge Graphs (KGs) store information in the form of (head, predicate, tail)-triples. To augment KGs with new knowledge, researchers proposed models for KG Completion (KGC) tasks such as link prediction; i.e., answering (h; p; ?) or (?; p; t) queries. Such models are usually evaluated with averaged metrics on a held-out test set. While useful for tracking progress, averaged single-score metrics cannot reveal what exactly a model has learned -- or failed to learn. To address this issue, we propose KGxBoard: an interactive framework for performing fine-grained evaluation on meaningful subsets of the data, each of which tests individual and interpretable capabilities of a KGC model. In our experiments, we highlight the findings that we discovered with the use of KGxBoard, which would have been impossible to detect with standard averaged single-score metrics.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源