论文标题
通过新的数据驱动连接的卡坦类型的测量跟踪,用于血管树跟踪
Geodesic Tracking via New Data-driven Connections of Cartan Type for Vascular Tree Tracking
论文作者
论文摘要
我们在同质空间$ \ mathbb {m} _2 _2 $ 2D位置和方向上引入了Plus Cartan连接的数据驱动版本。我们制定了一个定理,该定理描述了有关这种新数据驱动的连接以及相应的riemannian歧管的最短和直曲线(分别平行速度和平行动量)。然后,我们将这些最短的曲线用于在$ \ Mathbb {M} _ {2} $上定义的多取向图像表示中复杂脉管系统的测地曲线跟踪。数据驱动的cartan连接表征了所有测量学的哈密顿流动。它还允许改善我们通过全球最佳测量学跟踪的(提起的)血管结构的曲率和未对准的适应性。我们通过$ \ Mathbb {M} _2 $在距离地图上的最陡下降来计算这些大地测量学,我们通过一种新的修改的各向异性快速制定方法来计算。 我们的实验范围从跟踪具有固定终点的单血管到在视网膜图像中跟踪完整的血管树。单血管跟踪是在多取向图像表示中进行的,我们将所得的大地测量学投射回基础图像。完整的血管树跟踪仅需要两次运行,并且避免了先前的分割,额外的锚点的放置以及在地球模型之间的动态切换。 总体而言,我们使用单个,灵活的,透明的,数据驱动的地球模型提供了一种测量的跟踪方法,该模型可提供全球最佳曲线,该曲线正确地遵循视网膜图像中高度复杂的血管结构。 本文中的所有实验均可通过github(https://github.com/nickyvdberg/datadadriventracking)获得的记录的Mathematica笔记本复制。
We introduce a data-driven version of the plus Cartan connection on the homogeneous space $\mathbb{M}_2$ of 2D positions and orientations. We formulate a theorem that describes all shortest and straight curves (parallel velocity and parallel momentum, respectively) with respect to this new data-driven connection and corresponding Riemannian manifold. Then we use these shortest curves for geodesic tracking of complex vasculature in multi-orientation image representations defined on $\mathbb{M}_{2}$. The data-driven Cartan connection characterizes the Hamiltonian flow of all geodesics. It also allows for improved adaptation to curvature and misalignment of the (lifted) vessel structure that we track via globally optimal geodesics. We compute these geodesics numerically via steepest descent on distance maps on $\mathbb{M}_2$ that we compute by a new modified anisotropic fast-marching method. Our experiments range from tracking single blood vessels with fixed endpoints to tracking complete vascular trees in retinal images. Single vessel tracking is performed in a single run in the multi-orientation image representation, where we project the resulting geodesics back onto the underlying image. The complete vascular tree tracking requires only two runs and avoids prior segmentation, placement of extra anchor points, and dynamic switching between geodesic models. Altogether we provide a geodesic tracking method using a single, flexible, transparent, data-driven geodesic model providing globally optimal curves which correctly follow highly complex vascular structures in retinal images. All experiments in this article can be reproduced via documented Mathematica notebooks available at GitHub (https://github.com/NickyvdBerg/DataDrivenTracking).