论文标题

在动态网络中学习线性模块,缺少节点观察

Learning linear modules in a dynamic network with missing node observations

论文作者

Ramaswamy, Karthik R., Bottegal, Giulio, Hof, Paul M. J. Van den

论文摘要

为了识别动态网络中嵌入的系统(模块),必须制定一个多输入估计问题,需要测量某些节点并将其作为预测输入。但是,由于传感器选择和放置问题,在许多实际情况下,其中一些节点可能无法测量。这可能会导致目标模块的偏差估计。此外,与多输入结构相关的识别问题可能需要确定实验者不特别感兴趣的大量参数,并且在大型网络中的计算复杂性增加。在本文中,我们通过使用数据增强策略来解决这些问题,该策略使我们能够重建缺失的节点测量并提高估计目标模块的准确性。为此,我们使用基于正规化的基于内核的方法和近似推理方法开发了系统识别方法。为感兴趣的模块保留一个参数模型,我们将其他模块作为高斯过程(GP)建模,并用所谓的稳定样条核给出的内核。经验贝叶斯(EB)方法用于估计目标模块的参数。相关的优化问题是使用预期最大化(EM)方法来解决的,在该方法中,我们采用马尔可夫链蒙特卡洛(MCMC)技术来重建未知的缺失节点信息和网络动力学。动态网络示例上的数值模拟说明了开发方法的电势。

In order to identify a system (module) embedded in a dynamic network, one has to formulate a multiple-input estimation problem that necessitates certain nodes to be measured and included as predictor inputs. However, some of these nodes may not be measurable in many practical cases due to sensor selection and placement issues. This may result in biased estimates of the target module. Furthermore, the identification problem associated with the multiple-input structure may require determining a large number of parameters that are not of particular interest to the experimenter, with increased computational complexity in large-sized networks. In this paper, we tackle these problems by using a data augmentation strategy that allows us to reconstruct the missing node measurements and increase the accuracy of the estimated target module. To this end, we develop a system identification method using regularized kernel-based methods coupled with approximate inference methods. Keeping a parametric model for the module of interest, we model the other modules as Gaussian Processes (GP) with a kernel given by the so-called stable spline kernel. An Empirical Bayes (EB) approach is used to estimate the parameters of the target module. The related optimization problem is solved using an Expectation-Maximization (EM) method, where we employ a Markov-chain Monte Carlo (MCMC) technique to reconstruct the unknown missing node information and the network dynamics. Numerical simulations on dynamic network examples illustrate the potentials of the developed method.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源