论文标题

beta分级投资组合

Beta-Sorted Portfolios

论文作者

Cattaneo, Matias D., Crump, Richard K., Wang, Weining

论文摘要

Beta分级投资组合 - 由与选定风险因素相似的资产组成的投资组合 - 是经验融资中流行的工具,可以分析(条件)预期收益的模型。尽管使用了广泛使用,但与可比的程序(例如两次通用回归)相比,它们的统计特性知之甚少。我们通过将程序作为两步的非参数估计器施放,并以非参数第一步和Beta-Aptapaptive Portfolios的构建来正式研究Beta分级投资组合返回的属性。我们的框架合理化了众所周知的估计算法,具有关于一般数据生成过程的精确经济和统计假设,并表征其关键特征。我们研究了单个横截面和随时间的聚集(例如,均值)的β-分级投资组合,提供了确保一致性和渐近正态性以及新的均匀推理程序的条件,并允许对财务应用中各种相关假设进行不确定性定量和测试。我们还强调了当前的经验实践的一些局限性,并讨论从单个横截面或整个样本中可以从回到beta分级投资组合的回报中得出哪些推论。最后,我们在经验应用中说明了新程序的功能。

Beta-sorted portfolios -- portfolios comprised of assets with similar covariation to selected risk factors -- are a popular tool in empirical finance to analyze models of (conditional) expected returns. Despite their widespread use, little is known of their statistical properties in contrast to comparable procedures such as two-pass regressions. We formally investigate the properties of beta-sorted portfolio returns by casting the procedure as a two-step nonparametric estimator with a nonparametric first step and a beta-adaptive portfolios construction. Our framework rationalize the well-known estimation algorithm with precise economic and statistical assumptions on the general data generating process and characterize its key features. We study beta-sorted portfolios for both a single cross-section as well as for aggregation over time (e.g., the grand mean), offering conditions that ensure consistency and asymptotic normality along with new uniform inference procedures allowing for uncertainty quantification and testing of various relevant hypotheses in financial applications. We also highlight some limitations of current empirical practices and discuss what inferences can and cannot be drawn from returns to beta-sorted portfolios for either a single cross-section or across the whole sample. Finally, we illustrate the functionality of our new procedures in an empirical application.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源