论文标题
在一般的非正式转换下扩展无质量klein-gordon方程的对称性
Extending the symmetry of the massless Klein-Gordon equation under the general disformal transformation
论文作者
论文摘要
克莱恩 - 戈登方程是现场理论中最基本的方程之一,在保形转换下并不是不变的。然而,其无质量极限在Bekenstein的非正式转化下表现出对称性,但在度量变化的某些条件下。在这项研究中,我们探讨了涉及Bekenstein的一般杂物转化下的Klein-Gordon方程的对称性,以及在文献中探讨的“亚替代化”的层次结构(在通胀宇宙学和标量探测理论的背景下)。我们发现,在这种概括的情况下,可以扩展无质量极限中的对称性,只要对共形因子具有特殊形式。解决对称性的有效扩展后,我们研究了一般的异常转化的可逆性,以避免在更改度量时传播非物理自由度。我们得出了反向转换和随之而来的限制,从而使这一逆变动成为可能。
The Klein-Gordon equation, one of the most fundamental equations in field theory, is known to be not invariant under conformal transformation. However, its massless limit exhibits symmetry under Bekenstein's disformal transformation, subject to some conditions on the disformal part of the metric variation. In this study, we explore the symmetry of the Klein-Gordon equation under the general disformal transformation encompassing that of Bekenstein and a hierarchy of `sub-generalisations' explored in the literature (within the context of inflationary cosmology and scalar-tensor theories). We find that the symmetry in the massless limit can be extended under this generalisation provided that the disformal factors takes a special form in relation to the conformal factor. Upon settling the effective extension of symmetry, we investigate the invertibility of the general disformal transformation to avoid propagating non-physical degrees of freedom upon changing the metric. We derive the inverse transformation and the accompanying restrictions that make this inverse possible.