论文标题

在超晶格Wannier-Stark梯子中受控量化绝热运输

Controlled Quantized Adiabatic Transport in a superlattice Wannier-Stark ladder

论文作者

Unanyan, R. G., Vitanov, N. V., Fleischhauer, M.

论文摘要

天生的定理是量子力学的最基本定理之一,构成了在量子系统的希尔伯特空间中可靠,有效导航的基础,其依赖于时间依赖的汉密尔顿人通过绝热进化。在没有水平过境的情况下,即没有归化性,在绝热的时间演化下,汉密尔顿人的所有特征状态都保持了其能量秩序,并由保守的整数量子数字标记。因此,控制哈密顿量的本征状态及其在渐近限制中的能量顺序,可以在大量初始状态和目标状态之间设计完美的绝热转移。状态转移的保真度仅受绝热性的限制,目标状态的选择由整数不变标记特征状态的顺序标记。我们在这里展示了有限的超级晶格Wannier-Stark梯子的示例,即具有交替跳高幅度和持续潜在梯度的一维晶格,可以使用这种绝热的特征态的绝热控制,以诱导完美量化的单粒子在预定数量的晶格位点跨粒子运输。我们将本文献给了我们已故的朋友和同事布鲁斯·肖尔(Bruce Shore)的记忆,他是绝热过程的专家,并向我们教会了很多有关该领域的知识。

The Born-Fock theorem is one of the most fundamental theorems of quantum mechanics and forms the basis for reliable and efficient navigation in the Hilbert space of a quantum system with a time-dependent Hamiltonian by adiabatic evolution. In the absence of level crossings, i.e. without degeneracies, and under adiabatic time evolution all eigenstates of the Hamiltonian keep their energetic order, labelled by a conserved integer quantum number. Thus controlling the eigenstates of the Hamiltonian and their energetic order in asymptotic limits allows to engineer a perfect adiabatic transfer between a large number of initial and target states. The fidelity of the state transfer is only limited by adiabaticity and the selection of target states is controlled by the integer invariant labelling the order of eigenstates. We here show for the example of a finite superlattice Wannier-Stark ladder, i.e. a one-dimensional lattice with alternating hopping amplitudes and constant potential gradient, that such an adiabatic control of eigenstates can be used to induce perfectly quantized single-particle transport across a pre-determined number of lattice sites. We dedicate this paper to the memory of our late friend and colleague Bruce Shore, who was an expert in adiabatic processes and taught us much about this field.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源