论文标题
FS-ban:用于域泛化的重生网络很少分类
FS-BAN: Born-Again Networks for Domain Generalization Few-Shot Classification
论文作者
论文摘要
常规的几杆分类(FSC)旨在识别出有限标记的数据的新课程中的样本。最近,已经提出了域泛化FSC(DG-FSC),目的是识别来自看不见的域的新型类样品。 DG-FSC由于基础类(用于培训)和新颖的类(在评估中遇到)之间的域转移而对许多模型构成了巨大的挑战。在这项工作中,我们为解决DG-FSC做出了两个新颖的贡献。我们的第一个贡献是提出重生网络(BAN)情节培训,并全面研究其对DG-FSC的有效性。作为一种特定的知识蒸馏形式,已证明禁令可以通过封闭设置的设置来改善常规监督分类的概括。这种改善的概括促使我们研究了DG-FSC的禁令,我们表明禁令有望解决DG-FSC中遇到的域转移。在令人鼓舞的发现的基础上,我们的第二个(主要)贡献是提出几乎没有射击禁令(FS-BAN),这是DG-FSC的新型禁令。我们提出的FS-BAN包括新颖的多任务学习目标:相互正则化,不匹配的老师和元控制温度,这些目标都是专门设计的,旨在克服DG-FSC中的中心和独特挑战,即过度拟合和领域差异。我们分析了这些技术的不同设计选择。我们对六个数据集和三个基线模型进行了全面的定量和定性分析和评估。结果表明,我们提出的FS-BAN始终提高基线模型的概括性能并达到DG-FSC的最先进的准确性。项目页面:https://yunqing-me.github.io/born-again-fs/。
Conventional Few-shot classification (FSC) aims to recognize samples from novel classes given limited labeled data. Recently, domain generalization FSC (DG-FSC) has been proposed with the goal to recognize novel class samples from unseen domains. DG-FSC poses considerable challenges to many models due to the domain shift between base classes (used in training) and novel classes (encountered in evaluation). In this work, we make two novel contributions to tackle DG-FSC. Our first contribution is to propose Born-Again Network (BAN) episodic training and comprehensively investigate its effectiveness for DG-FSC. As a specific form of knowledge distillation, BAN has been shown to achieve improved generalization in conventional supervised classification with a closed-set setup. This improved generalization motivates us to study BAN for DG-FSC, and we show that BAN is promising to address the domain shift encountered in DG-FSC. Building on the encouraging findings, our second (major) contribution is to propose Few-Shot BAN (FS-BAN), a novel BAN approach for DG-FSC. Our proposed FS-BAN includes novel multi-task learning objectives: Mutual Regularization, Mismatched Teacher, and Meta-Control Temperature, each of these is specifically designed to overcome central and unique challenges in DG-FSC, namely overfitting and domain discrepancy. We analyze different design choices of these techniques. We conduct comprehensive quantitative and qualitative analysis and evaluation over six datasets and three baseline models. The results suggest that our proposed FS-BAN consistently improves the generalization performance of baseline models and achieves state-of-the-art accuracy for DG-FSC. Project Page: https://yunqing-me.github.io/Born-Again-FS/.