论文标题
公制植物和魏尔尼亚几何形状的投射转换
Projective transformations in metric-affine and Weylian geometries
论文作者
论文摘要
我们讨论了作用于Riemann-Cartan和Riemann-Cartan-Weyl引力的仿射模型的投射转换概念的概括,该模型保留了轻孔的投射结构。我们展示了如何使用某些投射转换下的不变性来重铸Riemann-Cartan-Weyl几何形状作为模型,在这种模型中,扭力矢量扮演了Weyl仪势的作用,我们称之为扭转扭矩,或者称为具有传统Weyl(weyl(结构))不变性的模型。
We discuss generalizations of the notions of projective transformations acting on affine model of Riemann-Cartan and Riemann-Cartan-Weyl gravity which preserve the projective structure of the light-cones. We show how the invariance under some projective transformations can be used to recast a Riemann-Cartan-Weyl geometry either as a model in which the role of the Weyl gauge potential is played by the torsion vector, which we call torsion-gauging, or as a model with traditional Weyl (conformal) invariance.