论文标题
部分可观测时空混沌系统的无模型预测
Event-Triggered Time-Varying Bayesian Optimization
论文作者
论文摘要
我们考虑使用随时间变化的贝叶斯优化(TVBO)依次优化时间变化的目标函数的问题。当前的TVBO方法需要先验了解恒定的变化速率,以应对由时间变化引起的陈旧数据。但是,实际上,变化率通常是未知的。我们提出了一种事件触发的算法,ET-GP-UCB,将优化问题视为静态问题,直到它检测到目标函数的变化然后重置数据集。这允许该算法在线适应实现的时间更改,而无需确切的先验知识。事件触发器基于高斯过程回归中使用的概率统一误差界。我们在自适应重置的情况下得出了遗憾的界限,而无需确切的时间变化,并显示了数值实验中ET-GP-UCB在合成和现实世界中竞争GP-UCB算法的表现。结果表明,ET-GP-UCB很容易适用,而无需大量的高参数调整。
We consider the problem of sequentially optimizing a time-varying objective function using time-varying Bayesian optimization (TVBO). Current approaches to TVBO require prior knowledge of a constant rate of change to cope with stale data arising from time variations. However, in practice, the rate of change is usually unknown. We propose an event-triggered algorithm, ET-GP-UCB, that treats the optimization problem as static until it detects changes in the objective function and then resets the dataset. This allows the algorithm to adapt online to realized temporal changes without the need for exact prior knowledge. The event trigger is based on probabilistic uniform error bounds used in Gaussian process regression. We derive regret bounds for adaptive resets without exact prior knowledge of the temporal changes and show in numerical experiments that ET-GP-UCB outperforms competing GP-UCB algorithms on both synthetic and real-world data. The results demonstrate that ET-GP-UCB is readily applicable without extensive hyperparameter tuning.