论文标题

多项式随机微分方程的到达避免分析

Reach-Avoid Analysis for Polynomial Stochastic Differential Equations

论文作者

Xue, Bai, Zhan, Naijun, Fränzle, Martin

论文摘要

在本文中,我们提出了一种新型的半定义编程方法,该方法通过开放(即,不是限制的先验时间范围)解决了由多项式随机微分方程建模的动力学系统。本文中的避免问题是一种概率保证:我们从内部A $ p $ -REACH-AVOID集合(即,最终确保该系统最终进入给定的目标集的概率大于$ p $的概率,而在指定的安全设置内部保持直到目标命中的概率,该概率大于$ p $。我们的方法始于构建有界价值函数,其严格的$ p $超级级别的集合等于$ p $ -REACH-AVOID集。然后将此值函数简化为两次连续可区分的解决方案。方程系统促进了使用平方符号分解的多元多项式的分解,从而促进了半准计划的构建,从而将非convex ress-aver-avoid问题转换为凸优化问题。半决赛程序可以在多项式时间内通过许多现有强大的算法(例如内部点方法和现成的软件包)有效地解决。我们想指出的是,我们的方法可以直接专门针对通过A.O.,随机屏障证书方法和针对普通微分方程的触及范围分析来解决经典的安全验证。此外,提供了几个示例来证明所提出方法的理论和算法发展。

In this paper we propose a novel semi-definite programming approach that solves reach-avoid problems over open (i.e., not bounded a priori) time horizons for dynamical systems modeled by polynomial stochastic differential equations. The reach-avoid problem in this paper is a probabilistic guarantee: we approximate from the inner a $p$-reach-avoid set, i.e., the set of initial states guaranteeing with probability larger than $p$ that the system eventually enters a given target set while remaining inside a specified safe set till the target hit. Our approach begins with the construction of a bounded value function, whose strict $p$ super-level set is equal to the $p$-reach-avoid set. This value function is then reduced to a twice continuously differentiable solution to a system of equations. The system of equations facilitates the construction of a semi-definite program using sum-of-squares decomposition for multivariate polynomials and thus the transformation of nonconvex reach-avoid problems into a convex optimization problem. The semi-definite program can be solved efficiently in polynomial time with many existing powerful algorithms such as interior point methods and off-the-shelf software packages. We would like to point out that our approach can straightforwardly be specialized to address classical safety verification by, a.o., stochastic barrier certificate methods and reach-avoid analysis for ordinary differential equations. In addition, several examples are provided to demonstrate theoretical and algorithmic developments of the proposed method.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源