论文标题
与一般二元映射相对应的Yosida近似值的连续性
Continuity of the Yosida Approximants Corresponding to General Duality Mappings
论文作者
论文摘要
令$ x $为真正的本地均匀凸出巴纳克空间,$ x^*$是$ x $的双空间。令$φ:\ mathbf r _+\ to \ mathbf r _+$严格增加且连续的功能,以使$φ(0)= 0 $,$φ(r)\ to \ infty $ as $ r \ as $ r \ to \ infty $,让$j_φ$是duality映射为duality映射到$φ$。我们将证明,每$ r> 0 $和x $中的每一个$ x_0 \都存在一个非交换函数$ψ=ψ(r,x_0):\ mathbf r _+\ to \ mathbf r _+$ x-x_0\rangle \ge ψ(\|x-x_0\|) \|x-x_0\|$ for all $x$ satisfying $\|x-x_0\|\le R$ and all $x^*\in J_φx$ and $x_0^*\in J_φx_0.$ This result extends the previous results of Prüss and Kartsatos who studied标准化的偶性映射$ j $(带有$φ(r)= r $),分别用于均匀凸出和本地均匀的Banach空间。作为上述结果的应用,我们简要证明了yosida近似值的连续性$a_λ^φ$并分辨出最大单调算子$ a的$j_λ^φ$ $ x^*$是本地均匀凸的。此外,我们讨论了Yosida近似值的假单胞菌同型$a_λ^φ$,参考Browder度。
Let $X$ be a real locally uniformly convex Banach space and $X^*$ be the dual space of $X$. Let $φ:\mathbf R_+\to \mathbf R_+$ be a strictly increasing and continuous function such that $φ(0) = 0$, $φ(r) \to \infty$ as $r\to\infty$, and let $J_φ$ be the duality mapping corresponding to $φ$. We will prove that for every $R>0$ and every $x_0\in X$ there exists a nondecreasing function $ψ= ψ(R, x_0) :\mathbf R_+\to \mathbf R_+$ such that $ψ(0) = 0$, $ψ(r)>0$ for $r>0$, and $\langle x^*- x_0^*, x-x_0\rangle \ge ψ(\|x-x_0\|) \|x-x_0\|$ for all $x$ satisfying $\|x-x_0\|\le R$ and all $x^*\in J_φx$ and $x_0^*\in J_φx_0.$ This result extends the previous results of Prüss and Kartsatos who studied the normalized duality mapping $J$ (with $φ(r)=r$) for uniformly convex and locally uniformly Banach spaces, respectively. As an application of the above result, we give a concise proof of the continuity of the Yosida approximants $A_λ^φ$ and resolvents $J_λ^φ$ of a maximal monotone operator $A:X\supset X\to 2^{X^*}$ on $(0, \infty) \times X$ for an arbitrary $φ$ when $X$ is reflexive and both $X$ and $X^*$ are locally uniformly convex. In addition, we discuss pseudomonotone homotopy of the Yosida approximants $A_λ^φ$ with reference to the Browder degree.