论文标题

投影与落后,半往前和近端的台阶分开

Projective splitting with backward, half-forward and proximal-Newton steps

论文作者

Alves, M. Marques

论文摘要

我们提出并研究了用于求解涉及$ N $最大单调算子的有限总和的多项复合单调包含问题的投射分裂算法的弱收敛性,每种算法具有有限的总和,每个单调算子具有内部四个块结构:最大值单调,Lipschitz Continum,Cocoerciel,Cocoercive,Cocoercive,Cocoercive and Complace operators的总和。我们展示了如何相对于最大单调和Lipschitz $+$ cocoercive组件,同时相对于平滑可区分的块,分别对向后和Lipschitz $+$ cocoercive组件执行了向后和半程步骤。

We propose and study the weak convergence of a projective splitting algorithm for solving multi-term composite monotone inclusion problems involving the finite sum of $n$ maximal monotone operators, each of which having an inner four-block structure: sum of maximal monotone, Lipschitz continuous, cocoercive and smooth differentiable operators. We show how to perform backward and half-forward steps with respect to the maximal monotone and Lipschitz$+$cocoercive components, respectively, while performing proximal-Newton steps with respect to smooth differentiable blocks.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源