论文标题
学习可见性,可见稳定的人体估计
Learning Visibility for Robust Dense Human Body Estimation
论文作者
论文摘要
从2D图像中估算3D人的姿势和形状是一项至关重要但又具有挑战性的任务。虽然先前具有基于模型表示的方法可以在全身图像上表现出色,但当身体的一部分被遮住或框架外面时,它们通常会失败。此外,这些结果通常不会忠实地捕获人类的轮廓,因为它们的可变形模型有限(例如,仅代表裸体)。另一种方法是估计图像空间中预定义模板主体的密集顶点。这些表示形式可有效地将顶点定位在图像中,但无法处理框架外的身体部位。在这项工作中,我们学习了对部分观察的强大人体估计。我们明确地对X,Y和Z轴中人类关节和顶点的可见性进行了建模。 X和Y轴中的可见性有助于区分框架外情况,深度轴的可见性对应于闭塞(其他对象的自我闭合或遮挡)。我们从密集的紫外线对应关系中获得可见性标签的伪基,并训练神经网络以预测可见性以及3D坐标。我们表明,可见性可以用作1)额外的信号,以解决自封型顶点的深度排序的歧义,以及2)将人体模型拟合到预测时的正则化项。对多个3D人类数据集进行的广泛实验表明,可见性建模显着提高了人体估计的准确性,尤其是对于部分体型病例。我们的带代码的项目页面是:https://github.com/chhankyao/visdb。
Estimating 3D human pose and shape from 2D images is a crucial yet challenging task. While prior methods with model-based representations can perform reasonably well on whole-body images, they often fail when parts of the body are occluded or outside the frame. Moreover, these results usually do not faithfully capture the human silhouettes due to their limited representation power of deformable models (e.g., representing only the naked body). An alternative approach is to estimate dense vertices of a predefined template body in the image space. Such representations are effective in localizing vertices within an image but cannot handle out-of-frame body parts. In this work, we learn dense human body estimation that is robust to partial observations. We explicitly model the visibility of human joints and vertices in the x, y, and z axes separately. The visibility in x and y axes help distinguishing out-of-frame cases, and the visibility in depth axis corresponds to occlusions (either self-occlusions or occlusions by other objects). We obtain pseudo ground-truths of visibility labels from dense UV correspondences and train a neural network to predict visibility along with 3D coordinates. We show that visibility can serve as 1) an additional signal to resolve depth ordering ambiguities of self-occluded vertices and 2) a regularization term when fitting a human body model to the predictions. Extensive experiments on multiple 3D human datasets demonstrate that visibility modeling significantly improves the accuracy of human body estimation, especially for partial-body cases. Our project page with code is at: https://github.com/chhankyao/visdb.