论文标题
通过组合动量对比度学习和组斑块嵌入,从整个幻灯片图像中评估患者级的微卫星稳定性评估
Patient-level Microsatellite Stability Assessment from Whole Slide Images By Combining Momentum Contrast Learning and Group Patch Embeddings
论文作者
论文摘要
评估患者结直肠癌的微卫星稳定性状态对于个性化治疗方案至关重要。最近,提出了卷积 - 神经网络(CNN)与转移学习方法结合使用,以规避传统的实验室测试,以确定苏木精和曙红染色的活检全幻灯片图像(WSI)的微卫星状态。但是,WSI的高分辨率实际上阻止了整个WSI的直接分类。当前方法通过先对WSI提取的小斑块进行分类,然后汇总补丁级分类ligits来推断患者级状态,从而绕过WSI高分辨率。这种方法限制了捕获位于高分辨率WSI数据的重要信息的能力。我们引入了一种有效的方法来利用WSI高分辨率信息通过对贴片嵌入的动量学习,并在这些嵌入组的组上培训患者级分类器。与直接的补丁级分类和患者水平聚合方法相比,我们的方法的准确性高达7.4 \%(AUC,$ 0.91 \ pm 0.01 $ vs. $ 0.85 \ pm 0.04 $,p Value $ <0.01 $)。我们的代码可以在https://github.com/technioncomputationalmrilab/coleroctal_cancer_ai上找到。
Assessing microsatellite stability status of a patient's colorectal cancer is crucial in personalizing treatment regime. Recently, convolutional-neural-networks (CNN) combined with transfer-learning approaches were proposed to circumvent traditional laboratory testing for determining microsatellite status from hematoxylin and eosin stained biopsy whole slide images (WSI). However, the high resolution of WSI practically prevent direct classification of the entire WSI. Current approaches bypass the WSI high resolution by first classifying small patches extracted from the WSI, and then aggregating patch-level classification logits to deduce the patient-level status. Such approaches limit the capacity to capture important information which resides at the high resolution WSI data. We introduce an effective approach to leverage WSI high resolution information by momentum contrastive learning of patch embeddings along with training a patient-level classifier on groups of those embeddings. Our approach achieves up to 7.4\% better accuracy compared to the straightforward patch-level classification and patient level aggregation approach with a higher stability (AUC, $0.91 \pm 0.01$ vs. $0.85 \pm 0.04$, p-value$<0.01$). Our code can be found at https://github.com/TechnionComputationalMRILab/colorectal_cancer_ai.