论文标题

具有非透明度相关的K3表面模量空间的压缩

Compactifications of moduli spaces of K3 surfaces with a nonsymplectic involution

论文作者

Alexeev, Valery, Engel, Philip

论文摘要

$ 75 $ MODULI空间$ f_s $ f_s $ k3表面具有非共透性相关性。我们为$ f_s $中的单参数退化提供了Kulikov模型的详细描述。在$ 50 $的情况下,固定的纠纷基因座具有$ c_g $的$ g \ ge2 $,我们通过稳定对(x,εc_g)$确定$ f_s $的KSBA压缩的正常化,具有明显的半固定的半固定性压实$ f_s $。

There are $75$ moduli spaces $F_S$ of K3 surfaces with a nonsymplectic involution. We give detailed descriptions of Kulikov models for one-parameter degenerations in $F_S$. In the $50$ cases where the fixed locus of the involution has a component $C_g$ of genus $g\ge2$, we identify normalizations of the KSBA compactifications of $F_S$ via stable pairs $(X,εC_g)$, with explicit semitoroidal compactifications of $F_S$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源