论文标题
信息理论的熵多 - 距离最佳运输的等效性:多代理通信的理论
Information-Theoretic Equivalence of Entropic Multi-Marginal Optimal Transport: A Theory for Multi-Agent Communication
论文作者
论文摘要
在本文中,我们提出了我们的信息理论等效性的熵多界限最佳运输(MOT)。这种等效性可以很容易地减少到熵最佳运输(OT)的情况下。因为OT被广泛用于比较知识或信念之间的差异,所以我们将此结果应用于具有不同信念的代理商之间的交流。我们的结果正式证明了熵OT是Wang等人给出的最佳信息的陈述。 [2020]并将其概括为多代理案例。我们认为,我们的工作可以阐明未来的多代理团队系统中的OT理论。
In this paper, we propose our information-theoretic equivalence of entropic multi-marginal optimal transport (MOT). This equivalence can be easily reduced to the case of entropic optimal transport (OT). Because OT is widely used to compare differences between knowledge or beliefs, we apply this result to the communication between agents with different beliefs. Our results formally prove the statement that entropic OT is information-theoretically optimal given by Wang et al. [2020] and generalize it to the multi-agent case. We believe that our work can shed light on OT theory in future multi-agent teaming systems.