论文标题

关于连接性查询的非效率PAC可学习性

On the non-efficient PAC learnability of conjunctive queries

论文作者

Cate, Balder ten, Funk, Maurice, Jung, Jean Christoph, Lutz, Carsten

论文摘要

该注释有三个目的:(i)我们提供了一个独立的阐述,表明连接性查询在可能的模型中无法有效地学习(PAC)模型,从而清楚地关注了复杂的事实,即该概念类缺乏拟合多项式的属性,这是在计算学院学习理论理论文献中均具有宽容性的属性; (ii)我们建立了一个强大的负PAC可学习性结果,该结果适用于许多限制类别的连接性查询(CQ),包括针对“ acyclicity”概念的露无环CQ; (iii)我们表明,CQS(和UCQS)在会员查询中有效地学习了PAC。

This note serves three purposes: (i) we provide a self-contained exposition of the fact that conjunctive queries are not efficiently learnable in the Probably-Approximately-Correct (PAC) model, paying clear attention to the complicating fact that this concept class lacks the polynomial-size fitting property, a property that is tacitly assumed in much of the computational learning theory literature; (ii) we establish a strong negative PAC learnability result that applies to many restricted classes of conjunctive queries (CQs), including acyclic CQs for a wide range of notions of "acyclicity"; (iii) we show that CQs (and UCQs) are efficiently PAC learnable with membership queries.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源