论文标题
一种新的位置校准方法,用于Muser图像
A New Position Calibration Method for MUSER Images
论文作者
论文摘要
Mingantu光谱放射光仪(Muser)是新一代太阳能专用的无线电成像 - 光谱望远镜,已在超宽带频率范围内实现了很高的时间,高角度和高频分辨率成像。每对Muser天线都在每个集成时间和频道中测量光圈平面中的复杂可见性。然后,通过可见性数据的逆傅立叶变换获得每个集成时间和频率通道的相应无线电图像。通常,复杂的可见性阶段因工具和传播效应而严重损坏。因此,强大的校准程序对于获得高保真无线电图像至关重要。尽管有许多可用的校准技术 - 例如,使用冗余基线,观察标准宇宙源或安装太阳能磁盘 - 以纠正上述相误差的可见性数据,但Muser配置了非冗余盆地,并且无法始终利用Solar磁盘结构。因此,除了这些可用的技术适合获得可靠的无线电图像时,还需要开发替代校准方法。在包含未知位置误差的点状校准源的情况下,我们首次得出数学模型来描述问题,并提出了一种优化方法,通过研究时间间隔的一定时期的无线电图像位置来校准这一未知错误。仿真实验和实际观察数据分析表明,此方法是有效且可行的。对于Muser的实际数据,校准位置误差在仪器的空间角度分辨率之内。这种校准方法也可以在其他情况下用于无线电孔合成观测值。
The Mingantu Spectral Radioheliograph (MUSER), a new generation of solar dedicated radio imaging-spectroscopic telescope, has realized high-time, high-angular, and high-frequency resolution imaging of the sun over an ultra-broadband frequency range. Each pair of MUSER antennas measures the complex visibility in the aperture plane for each integration time and frequency channel. The corresponding radio image for each integration time and frequency channel is then obtained by inverse Fourier transformation of the visibility data. In general, the phase of the complex visibility is severely corrupted by instrumental and propagation effects. Therefore, robust calibration procedures are vital in order to obtain high-fidelity radio images. While there are many calibration techniques available -- e.g., using redundant baselines, observing standard cosmic sources, or fitting the solar disk -- to correct the visibility data for the above-mentioned phase errors, MUSER is configured with non-redundant baselines and the solar disk structure cannot always be exploited. Therefore it is desirable to develop alternative calibration methods in addition to these available techniques whenever appropriate for MUSER to obtain reliable radio images. In the case that a point-like calibration source containing an unknown position error, we have for the first time derived a mathematical model to describe the problem and proposed an optimization method to calibrate this unknown error by studying the offset of the positions of radio images over a certain period of the time interval. Simulation experiments and actual observational data analyses indicate that this method is valid and feasible. For MUSER's practical data the calibrated position errors are within the spatial angular resolution of the instrument. This calibration method can also be used in other situations for radio aperture synthesis observations.