论文标题
有限组和某些应用的可剥离子组的结果
A result on s-semipermutable subgroups of finite groups and some applications
论文作者
论文摘要
令$ p $为质量数字,$ g $是$ p $ - 可销售的有限群,$ p $是$ g $的sylow $ p $ -subgroup。我们证明,如果$ n_g(p)$是$ p $ p $ p $ p $ -supersolvable,则$ g $是$ p $ -supersolvable,并且如果有一个子组$ h $ o的$ h $ of $ p $带有$ p'\ le h \ le h \ le h \ lex $(p)$,以便$ h $是$ s $ s $ s $ - s $ s $ in $ g $。作为应用程序,我们简化了一些已知结果的证明,并概括了一些已知结果。
Let $p$ be a prime number, $G$ be a $p$-solvable finite group and $P$ be a Sylow $p$-subgroup of $G$. We prove that $G$ is $p$-supersolvable if $N_G(P)$ is $p$-supersolvable and if there is a subgroup $H$ of $P$ with $P' \le H \le Φ(P)$ such that $H$ is $s$-semipermutable in $G$. As applications, we simplify the proofs of some known results and also generalize some known results.