论文标题

用于任意激发的广义非正交矩阵元素

Generalized nonorthogonal matrix elements for arbitrary excitations

论文作者

Burton, Hugh G. A.

论文摘要

利用非正交板条决定因素的电子结构方法面临有效计算非正交基质元件的挑战。在最近的出版物中,H。G。A. Burton,J。Chem。物理。 154,144109(2021),我向Wick的定理引入了广义的非正交扩展,该扩展可以允许矩阵元素在不同参考决定因素的激发配置之间得出。但是,这项工作仅提供了单个或双向兴奋的配置之间的单体和两体矩阵元素的明确表达式。在这里,将该框架扩展到任意激发之间的广义非正交矩阵元素。预计算和存储中间值允许通过$ \ Mathcal {O} {(1)} $比例相对于系统大小来评估一体和两体矩阵元素,并引入了Libgnme计算库,以实现这一目标。这些进步使得对非正交基质元件的评估几乎与它们的正交对应物一样容易,从而促进了非正交电子结构理论的新发展阶段。

Electronic structure methods that exploit nonorthogonal Slater determinants face the challenge of efficiently computing nonorthogonal matrix elements. In a recent publication, H. G. A. Burton, J. Chem. Phys. 154, 144109 (2021), I introduced a generalized nonorthogonal extension to Wick's theorem that allows matrix elements to be derived between excited configurations from different reference determinants. However, that work only provided explicit expressions for one- and two-body matrix elements between singly- or doubly-excited configurations. Here, this framework is extended to compute generalized nonorthogonal matrix elements between arbitrary excitations. Pre-computing and storing intermediate values allows one- and two-body matrix elements to be evaluated with an $\mathcal{O}{(1)}$ scaling relative to the system size, and the LibGNME computational library is introduced to achieve this in practice. These advances make the evaluation of nonorthogonal matrix elements almost as easy as their orthogonal counterparts, facilitating a new phase of development in nonorthogonal electronic structure theory.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源