论文标题

混合序列和基质空间中存在几乎贪婪的基础,包括besov空间

Existence of almost greedy bases in mixed-norm sequence and matrix spaces, including Besov spaces

论文作者

Albiac, Fernando, Ansorena, José L., Bello, Glenier, Wojtaszczyk, Przemysław

论文摘要

我们证明了序列$ \ ell_p \ oplus \ ell_q $和无限矩阵的空间besov空间,只要$ 0 <p <q <q <\ infty $,都会有几乎贪婪的基础。更确切地说,我们定制了几乎贪婪的基础,以使Lebesgue参数以规定的方式生长。我们的论点在很大程度上取决于[S. S. J. Dilworth,N。J。Kalton和D. Kutzarova,关于Banach空间中几乎贪婪的基础,Studia Math。 159(2003),否。 1,67-101]最初设计用于在Banach空间中构造几乎贪婪的基础,以使其对于具有非局部凸组件的混合式空间的直接总和有效。此外,我们证明,这些空间的所有几乎所有贪婪基地的基本功能随着$(m^{1/q})_ {m = 1}^\ infty $而生长。

We prove that the sequence spaces $\ell_p\oplus\ell_q$ and the spaces of infinite matrices $\ell_p(\ell_q)$, $\ell_q(\ell_p)$ and $(\bigoplus_{n=1}^\infty \ell_p^n)_{\ell_q}$, which are isomorphic to certain Besov spaces, have an almost greedy basis whenever $0<p<1<q<\infty$. More precisely, we custom-build almost greedy bases in such a way that the Lebesgue parameters grow in a prescribed manner. Our arguments critically depend on the extension of the Dilworth-Kalton-Kutzarova method from [S. J. Dilworth, N. J. Kalton, and D. Kutzarova, On the existence of almost greedy bases in Banach spaces, Studia Math. 159 (2003), no. 1, 67-101], which was originally designed for constructing almost greedy bases in Banach spaces, to make it valid for direct sums of mixed-normed spaces with nonlocally convex components. Additionally, we prove that the fundamental functions of all almost greedy bases of these spaces grow as $(m^{1/q})_{m=1}^\infty$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源