论文标题

表征在Schur定理上满足的nilpotent Lie代数

Characterizing nilpotent Lie algebras that satisfy on converse of the Schur's theorem

论文作者

Shamsaki, A., Niroomand, P.

论文摘要

令$ l $为有限的尺寸nilpotent lie代数,而$ d $是$ l/z(l)的最小数字发生器。 $已知$ \ dim l/z(l)= d \ dim l^{2} -t(l)$对于整数$ t(l)\ geq 0。$在本文中,我们对所有有限的尺寸nilpotent lie emential lie elgebras lie li $ l $ lbrace in \ lbrace in \ lbrace 0 a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a phe y a a a a a a a a a a a a a a a a a a a a a a a a a phe y。任意$ t(l)。 $

Let $ L $ be a finite dimensional nilpotent Lie algebra and $ d $ be the minimal number generators for $ L/Z(L). $ It is known that $ \dim L/Z(L)=d \dim L^{2}-t(L)$ for an integer $ t(L)\geq 0. $ In this paper, we classify all finite dimensional nilpotent Lie algebras $ L $ when $ t(L)\in \lbrace 0, 1, 2 \rbrace.$ We find also a construction, which shows that there exist Lie algebras of arbitrary $ t(L). $

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源