论文标题
表征在Schur定理上满足的nilpotent Lie代数
Characterizing nilpotent Lie algebras that satisfy on converse of the Schur's theorem
论文作者
论文摘要
令$ l $为有限的尺寸nilpotent lie代数,而$ d $是$ l/z(l)的最小数字发生器。 $已知$ \ dim l/z(l)= d \ dim l^{2} -t(l)$对于整数$ t(l)\ geq 0。$在本文中,我们对所有有限的尺寸nilpotent lie emential lie elgebras lie li $ l $ lbrace in \ lbrace in \ lbrace 0 a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a phe y a a a a a a a a a a a a a a a a a a a a a a a a a phe y。任意$ t(l)。 $
Let $ L $ be a finite dimensional nilpotent Lie algebra and $ d $ be the minimal number generators for $ L/Z(L). $ It is known that $ \dim L/Z(L)=d \dim L^{2}-t(L)$ for an integer $ t(L)\geq 0. $ In this paper, we classify all finite dimensional nilpotent Lie algebras $ L $ when $ t(L)\in \lbrace 0, 1, 2 \rbrace.$ We find also a construction, which shows that there exist Lie algebras of arbitrary $ t(L). $