论文标题
高陀螺仪数字的斑马条纹
Zebra stripes with high gyro-harmonic numbers
论文作者
论文摘要
太阳能无线电扎布拉用于测定太阳耀斑等离子体中的血浆密度和磁场。分析观察到的斑马条纹并通过双等离子体共振(DPR)不稳定性假设其产生,发现了高谐波数的高值。在某些情况下,它们超过一百,与到目前为止计算的DPR增长率分歧,随着陀螺仪数量的增加而降低。我们解决了如何生成具有较高陀螺数字$ s $的斑马的问题。为此,考虑到超热电子的损失损失$κ$分布,并改变了损失角,电子能量,电子能量和背景等离子体温度,我们计算了DPR不稳定性的增长率。我们在数值上计算出高杂交波的分散关系和增长率,发现如果损失键角为$ \ sim80^\ circ $,增长率随陀螺数的增加而增加。这些损失角度的最高增长率是速度$v_κ= 0.15 \,c $的最高增长率。陀螺仪数的功能的增长率仍然显示出明显的峰值,这与斑马条纹的频率相对应。随着$κ$指数的增加和背景温度降低,生长速率与周围生长速率水平的峰值达到了峰值。具有高值$ s $的斑马可以在存在具有较大损失角度角度的超热电子($ \ sim80^\ circ $)的区域中生成。此外,由于$ S $的高值,磁场相对较弱,并且在此类区域中具有较小的空间梯度。
Solar radio zebras are used in the determination of the plasma density and magnetic field in solar flare plasmas. Analyzing observed zebra stripes and assuming their generation by the double-plasma resonance (DPR) instability, high values of the gyro-harmonic number are found. In some cases, they exceed one hundred, in disagreement with the DPR growth rates computed up to now, which decrease with increasing gyro-harmonic number. We address the question of how the zebras with high values of the gyro-harmonic numbers $s$ are generated. For this purpose, we compute growth rates of the DPR instability in a very broad range of $s$, considering a loss-cone $κ$-distribution of superthermal electrons and varying the loss-cone angle, electron energies, and background plasma temperature. We numerically calculated dispersion relations and growth rates of the upper-hybrid waves and found that the growth rates increase with increasing gyro-harmonic numbers if the loss-cone angles are $\sim80^\circ$. The highest growth rates for these loss-cone angles are obtained for the velocity $v_κ= 0.15\,c$. The growth rates as function of the gyro-harmonic number still show well distinct peaks, which correspond to zebra-stripe frequencies. The contrast of the growth rate peaks to surrounding growth rate levels increases as the $κ$ index increases and the background temperature decreases. Zebras with high values of $s$ can be generated in regions where loss-cone distributions of superthermal electrons with large loss-cone angles ($\sim80^\circ$) are present. Furthermore, owing to the high values of $s$, the magnetic field is relatively weak and has a small spatial gradient in such regions.