论文标题

机器学习在散装六角硼的各向异性热传输的原子间潜力

Machine Learning Interatomic Potential for Anisotropic Thermal Transport in Bulk Hexagonal Boron Nitride

论文作者

Tang, Jialin, Wang, Qi, Zheng, Jiongzhi, Cheng, Lin, Guo, Ruiqiang

论文摘要

分层材料中高度各向异性的热导率对于广泛的应用,例如电子设备的热管理,热绝缘和热电学至关重要。对分层材料中各向异性热传输的理解在很大程度上取决于基于密度功能理论(DFT)或经验潜能的原子模拟,但是这些材料的计算效率较低或准确性。最近,机器学习间的原子势(MLIP)正在成为弥合差距的强大工具。尽管最近在开发MLIP方面取得了进展,但很少关注能够准确预测分层材料的热性能的潜力,这与各向同性材料的情况相比,由于高度各向异性粘结和较弱的范德华在分层材料中的相互作用,这更具挑战性。在这里,我们在高斯近似电势(GAP)框架内引入了一个散装六角硼(H-BN)的MLIP,具有典型的分层结构。该差距可以很好地预测高度各向异性的声子传输性能和散装H-BN的热导率,而DFT级的精度则以降低的成本降低。我们的工作证明了间隙重现大量H-BN和潜在其他分层材料的各向异性势能表面的微妙特征的能力。预计基于MLIP的原子模拟能够极大地促进对声子传输的理解以及对分层材料中热物理特性的预测。

The highly anisotropic thermal conductivity in layered materials is crucial for a broad range of applications such as thermal management of electronic devices, thermal insulation, and thermoelectrics. Understanding of anisotropic thermal transport in layered materials largely depends on atomistic simulations based on density functional theory (DFT) or empirical potentials, which however suffer either low computational efficiency or accuracy. Recently, machine learning interatomic potentials (MLIPs) are emerging as a powerful tool to bridge the gap. Despite the recent progress in developing MLIPs, little attention has been paid to constructing a potential that can accurately predict the thermal properties of layered materials, which is more challenging compared with the case of isotropic materials because of the highly anisotropic bonding and weak van der Waals interactions in layered materials. Here, we introduce a MLIP within the Gaussian approximation potential (GAP) framework for bulk hexagonal boron nitride (h-BN) with a typical layered structure. The GAP can well predict the highly anisotropic phonon transport properties and thermal conductivity of bulk h-BN with DFT-level accuracy at orders of magnitude reduced cost. Our work demonstrates the ability of GAP to reproduce the subtle features of anisotropic potential energy surfaces of bulk h-BN and potentially other layered materials. Atomistic simulations based on MLIPs are expected to be able to greatly promote the understanding of phonon transport and the prediction of thermophysical properties in layered materials.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源