论文标题

多项式始终可以交配

Jordan mating is always possible for polynomials

论文作者

Zhang, Gaofei

论文摘要

假设$ f $和$ g $分别是两个严格的有限多项式$ d_1 $和$ d_2 $的多项式,并假设它们两个都有有限的超吸收固定点$ d_0 $。我们证明,始终可以构建一个理性地图$ r $ a $$ $$ d = d_1 + d_2 -d_0 $$,沿着$ f $和$ g $沿Jordan Curve curve Basins的Jordan曲线边界进行构建。结果可用于构建具有有趣动态的许多理性图。

Suppose $f$ and $g$ are two post-critically finite polynomials of degree $d_1$ and $d_2$ respectively and suppose both of them have a finite super-attracting fixed point of degree $d_0$. We prove that one can always construct a rational map $R$ of degree $$D = d_1 + d_2 - d_0$$ by gluing $f$ and $g$ along the Jordan curve boundaries of the immediate super-attracting basins. The result can be used to construct many rational maps with interesting dynamics.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源