论文标题

HST:压缩图像超分辨率的分层丝网变压器

HST: Hierarchical Swin Transformer for Compressed Image Super-resolution

论文作者

Li, Bingchen, Li, Xin, Lu, Yiting, Liu, Sen, Feng, Ruoyu, Chen, Zhibo

论文摘要

近年来,压缩图像超分辨率已引起了极大的关注,其中图像被压缩伪像和低分辨率伪影降解。由于复杂的杂种扭曲,因此很难通过简单的超分辨率和压缩伪像消除的简单合作来恢复扭曲的图像。在本文中,我们向前迈出了一步,提出了层次的SWIN变压器(HST)网络,以恢复低分辨率压缩图像,该图像共同捕获分层特征表示并分别用SWIN变压器增强每个尺度表示。此外,我们发现具有超分辨率(SR)任务的预处理对于压缩图像超分辨率至关重要。为了探索不同的SR预审查的影响,我们将常用的SR任务(例如,比科比奇和不同的实际超分辨率模拟)作为我们的预处理任务,并揭示了SR在压缩的图像超分辨率中起不可替代的作用。随着HST和预培训的合作,我们的HST在AIM 2022挑战中获得了低质量压缩图像超分辨率轨道的第五名,PSNR为23.51db。广泛的实验和消融研究已经验证了我们提出的方法的有效性。代码和模型可在https://github.com/ustc-imcl/hst-for-compressed-image-sr上找到。

Compressed Image Super-resolution has achieved great attention in recent years, where images are degraded with compression artifacts and low-resolution artifacts. Since the complex hybrid distortions, it is hard to restore the distorted image with the simple cooperation of super-resolution and compression artifacts removing. In this paper, we take a step forward to propose the Hierarchical Swin Transformer (HST) network to restore the low-resolution compressed image, which jointly captures the hierarchical feature representations and enhances each-scale representation with Swin transformer, respectively. Moreover, we find that the pretraining with Super-resolution (SR) task is vital in compressed image super-resolution. To explore the effects of different SR pretraining, we take the commonly-used SR tasks (e.g., bicubic and different real super-resolution simulations) as our pretraining tasks, and reveal that SR plays an irreplaceable role in the compressed image super-resolution. With the cooperation of HST and pre-training, our HST achieves the fifth place in AIM 2022 challenge on the low-quality compressed image super-resolution track, with the PSNR of 23.51dB. Extensive experiments and ablation studies have validated the effectiveness of our proposed methods. The code and models are available at https://github.com/USTC-IMCL/HST-for-Compressed-Image-SR.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源