论文标题
原子:巨大恒星形成区域的ALMA三毫米观测 - XII:原始群体中的片段化和多尺度气体运动学G12.42+0.50和G19.88-0.53
ATOMS: ALMA Three-millimeter Observations of Massive Star-forming regions -- XII: Fragmentation and multi-scale gas kinematics in protoclusters G12.42+0.50 and G19.88-0.53
论文作者
论文摘要
我们从ALMA三毫米观测到的两个原始群体的大规模恒星形成区域(原子)调查中介绍了新的连续性和分子线数据,G12.42+0.50和G19.88-0.53。 3毫米连续图显示了两个全球合同的原始群体中的每个核心。这些核心满足了高质量恒星形成的半径 - 质量关系和表面质量密度标准。与他们的出生团块类似,对核心的病毒分析表明它们正在经历重力崩溃($ \rmα_{vir} << 2 $)。研究了团块到核心尺度的碎片,并发现衍生的核心质量和分离与热牛仔裤碎片一致。我们检测到两个区域中具有速度梯度和多个流出的大规模丝状结构。 H $^{13} $ CO $^{+} $ MAP的树状图分析分别标识了几个分支机构和叶子结构,分别具有尺寸$ \ sim $ 0.1和0.03 PC。分支结构显示的超音速气体运动与拉尔森幂律一致,表明该空间尺度的气体运动学是由湍流驱动的。向跨气/亚音气体运动转变为$ \ sim $ 0.1 PC的空间尺度发生,表明湍流耗散。与此一致,叶子结构揭示了与拉尔森定律斜率偏离的气体动作。从大规模的融合细丝到崩溃的核心,G12.42+0.50和G19.88-0.53中的气体动力学显示了湍流和重力的规模依赖性优势,以及这两种驾驶机制的组合需要引用以解释原生物中巨大的恒星形成。
We present new continuum and molecular line data from the ALMA Three-millimeter Observations of Massive Star-forming regions (ATOMS) survey for the two protoclusters, G12.42+0.50 and G19.88-0.53. The 3 mm continuum maps reveal seven cores in each of the two globally contracting protoclusters. These cores satisfy the radius-mass relation and the surface mass density criteria for high-mass star formation. Similar to their natal clumps, the virial analysis of the cores suggests that they are undergoing gravitational collapse ($\rm α_{vir} << 2$). The clump to core scale fragmentation is investigated and the derived core masses and separations are found to be consistent with thermal Jeans fragmentation. We detect large-scale filamentary structures with velocity gradients and multiple outflows in both regions. Dendrogram analysis of the H$^{13}$CO$^{+}$ map identifies several branch and leaf structures with sizes $\sim$ 0.1 and 0.03 pc, respectively. The supersonic gas motion displayed by the branch structures is in agreement with the Larson power-law indicating that the gas kinematics at this spatial scale is driven by turbulence. The transition to transonic/subsonic gas motion is seen to occur at spatial scales of $\sim$0.1 pc indicating the dissipation of turbulence. In agreement with this, the leaf structures reveal gas motions that deviate from the slope of Larson's law. From the large-scale converging filaments to the collapsing cores, the gas dynamics in G12.42+0.50 and G19.88-0.53 show scale-dependent dominance of turbulence and gravity and the combination of these two driving mechanisms needs to be invoked to explain massive star formation in the protoclusters.