论文标题
部分可观测时空混沌系统的无模型预测
Vortices and cosmic strings in a generalized Born-Infeld model
论文作者
论文摘要
在本文中,我们考虑了普遍的出生菲尔德·希格斯模型中两种类型的拓扑孤子。我们探讨了模型的自伴结构,并证明了平面涡流解决方案的存在。此外,我们将该系统与爱因斯坦方程式结合在一起,并在$ \ Mathbb r^{1,1} \ times s $上研究宇宙字符串问题,其中$ s $是riemann的表面。当$ s $不正确时,我们证明了宇宙字符串解决方案的存在。我们还讨论了无穷大的涡流和宇宙弦的衰减估计值,并表明最小的能量是量化的,并分别取决于涡流和字符串的数量。
In this paper, we consider two types of topological solitons in a generalized Born-Infeld-Higgs model. We explore the self-dual structure of the model and prove the existence of planar vortex solutions. Furthermore, we couple the system with the Einstein equations and study the cosmic strings problem over $\mathbb R^{1,1}\times S$, where $S$ is a Riemann surface. We prove the existence of cosmic string solutions when $S$ is noncompact. We also discuss the decay estimates for vortices and cosmic strings at infinity and show that the minimal energy is quantized and depends on the number of vortices and strings, respectively.