论文标题

部分可观测时空混沌系统的无模型预测

Vortices and cosmic strings in a generalized Born-Infeld model

论文作者

Shao, Kai

论文摘要

在本文中,我们考虑了普遍的出生菲尔德·希格斯模型中两种类型的拓扑孤子。我们探讨了模型的自伴结构,并证明了平面涡流解决方案的存在。此外,我们将该系统与爱因斯坦方程式结合在一起,并在$ \ Mathbb r^{1,1} \ times s $上研究宇宙字符串问题,其中$ s $是riemann的表面。当$ s $不正确时,我们证明了宇宙字符串解决方案的存在。我们还讨论了无穷大的涡流和宇宙弦的衰减估计值,并表明最小的能量是量化的,并分别取决于涡流和字符串的数量。

In this paper, we consider two types of topological solitons in a generalized Born-Infeld-Higgs model. We explore the self-dual structure of the model and prove the existence of planar vortex solutions. Furthermore, we couple the system with the Einstein equations and study the cosmic strings problem over $\mathbb R^{1,1}\times S$, where $S$ is a Riemann surface. We prove the existence of cosmic string solutions when $S$ is noncompact. We also discuss the decay estimates for vortices and cosmic strings at infinity and show that the minimal energy is quantized and depends on the number of vortices and strings, respectively.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源