论文标题
使用修改深度学习神经网络的法医牙齿年龄估计
Forensic Dental Age Estimation Using Modified Deep Learning Neural Network
论文作者
论文摘要
牙科时代是确定个人年龄的最可靠方法之一。通过使用牙科全景射线照相(DPR)图像,法医科学中的医师和病理学家试图建立没有有效法律记录或注册患者的个人的年代年龄。实践中当前的方法需要密集的劳动,时间和合格的专家。在医学图像处理领域,深度学习算法的开发提高了预测真实价值的敏感性,同时降低了成像时间的处理速度。这项研究提出了一种使用1,332个DPR图像的自动化方法,以估计8至68岁的个体的法医年龄。最初,使用基于转移学习的模型进行了实验分析,包括InceptionV3,Densenet201,EdgitionNetB4,MobilenetV2,VGG16和Resnet50V2;因此,修改了表现最好的模型InceptionV3,并开发了新的神经网络模型。减少开发模型体系结构中已经可用的参数数量,从而导致更快,更准确的牙科年龄估计。所达到的结果的性能指标如下:平均绝对误差(MAE)为3.13,均方根误差(RMSE)为4.77,相关系数r $ $^2 $为87%。可以想象将新模型作为法医科学和牙科医学中的潜在可靠和实用的辅助设备。
Dental age is one of the most reliable methods to identify an individual's age. By using dental panoramic radiography (DPR) images, physicians and pathologists in forensic sciences try to establish the chronological age of individuals with no valid legal records or registered patients. The current methods in practice demand intensive labor, time, and qualified experts. The development of deep learning algorithms in the field of medical image processing has improved the sensitivity of predicting truth values while reducing the processing speed of imaging time. This study proposed an automated approach to estimate the forensic ages of individuals ranging in age from 8 to 68 using 1,332 DPR images. Initially, experimental analyses were performed with the transfer learning-based models, including InceptionV3, DenseNet201, EfficientNetB4, MobileNetV2, VGG16, and ResNet50V2; and accordingly, the best-performing model, InceptionV3, was modified, and a new neural network model was developed. Reducing the number of the parameters already available in the developed model architecture resulted in a faster and more accurate dental age estimation. The performance metrics of the results attained were as follows: mean absolute error (MAE) was 3.13, root mean square error (RMSE) was 4.77, and correlation coefficient R$^2$ was 87%. It is conceivable to propose the new model as potentially dependable and practical ancillary equipment in forensic sciences and dental medicine.