论文标题

部分可观测时空混沌系统的无模型预测

Visualising Model Training via Vowel Space for Text-To-Speech Systems

论文作者

Abeysinghe, Binu, James, Jesin, Watson, Catherine I., Marattukalam, Felix

论文摘要

随着通过机器学习的最新语音综合发展,本研究探讨了将语言学知识融合到可视化和评估合成语音模型培训的知识。如果在合成语音中可以看到和听到第一和第二联级的变化(又可以看到元音空间),则这些知识可以为语音综合技术开发人员提供信息。在大型美国英语数据库中训练的语音综合模型被微调为新西兰的英语声音,以确定是否可以看到和听到合成语音的元音空间的变化。分析了微调过程中不同间隔的元音空间,以确定该模型是否学习了新西兰英语元音空间。我们的基于元音空间分析的发现表明,我们可以可视化语音合成模型如何学习对其进行训练的数据库的元音空间。感知测试证实,当语音合成模型学习了正在训练的语音数据库的特征时,人类可以感知。使用元音空间作为中介评估有助于了解要在训练数据库中添加哪些声音,并基于语言知识来构建语音合成模型。

With the recent developments in speech synthesis via machine learning, this study explores incorporating linguistics knowledge to visualise and evaluate synthetic speech model training. If changes to the first and second formant (in turn, the vowel space) can be seen and heard in synthetic speech, this knowledge can inform speech synthesis technology developers. A speech synthesis model trained on a large General American English database was fine-tuned into a New Zealand English voice to identify if the changes in the vowel space of synthetic speech could be seen and heard. The vowel spaces at different intervals during the fine-tuning were analysed to determine if the model learned the New Zealand English vowel space. Our findings based on vowel space analysis show that we can visualise how a speech synthesis model learns the vowel space of the database it is trained on. Perception tests confirmed that humans could perceive when a speech synthesis model has learned characteristics of the speech database it is training on. Using the vowel space as an intermediary evaluation helps understand what sounds are to be added to the training database and build speech synthesis models based on linguistics knowledge.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源