论文标题

刚性仿射表面的自动形态组:身份分量

Automorphism groups of rigid affine surfaces: the identity component

论文作者

Perepechko, Alexander, Zaidenberg, Mikhail

论文摘要

众所周知,投影代数变体的自动形态组的身份成分是代数组。对于准标记品种而言,这通常不是事实。在本说明中,我们解决了一个问题:给定一个自动形态组$ {\ rm aut}(y aut}(y)$的身份组件$ {\ rm aut}^0(y)$的身份组件$ {\ rm aut}^0(y)$是一个代数组?我们表明,这种情况只有$ y $不承认该添加剂组的有效行动,才会发生这种情况。在后一种情况下,$ {\ rm aut}^0(y)$是等级$ \ le 2 $的代数。

It is known that the identity component of the automorphism group of a projective algebraic variety is an algebraic group. This is not true in general for quasi-projective varieties. In this note we address the question: given an affine algebraic surface $Y$, as to when the identity component ${\rm Aut}^0 (Y)$ of the automorphism group ${\rm Aut} (Y)$ is an algebraic group? We show that this happens if and only if $Y$ admits no effective action of the additive group of the field. In the latter case, ${\rm Aut}^0 (Y)$ is an algebraic torus of rank $\le 2$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源