论文标题

学习原始感知的歧视性表示,以进行几次学习

Learning Primitive-aware Discriminative Representations for Few-shot Learning

论文作者

Yang, Jianpeng, Niu, Yuhang, Xie, Xuemei, Shi, Guangming

论文摘要

很少有射击学习(FSL)旨在学习一个可以轻松适应的分类器,以识别只有几个标签示例的新颖类。关于FSL的一些最新工作已经产生了有希望的分类性能,其中图像级特征用于计算样本之间的相似性进行分类。但是,图像级特征忽略了对象的丰富细粒度和结构化形式,这些物体可能在可见和看不见的类之间转移且一致。人类如何轻松地与几个Samples一起识别新颖的课程?认知科学的一些研究表明,人类可以通过原语识别新的类别。尽管基本和新颖的类别是不重叠的,但它们可以共享一些共同点。受上述重新搜索的启发,我们提出了一个原始的采矿和推理网络(PMRN),以基于基于公制的FSL模型来学习原始感知的表示。具体而言,我们首先为特征提取器差异添加自我划线拼图任务(SSJ),指导模型以对对应对象零件对应于FEA-TURE通道中的视觉模式。为了进一步挖掘判别性表示,适用于群集和重量在空间和se的视觉模式上,将一种自适应木 - 纳尔分组(ACG)方法应用于群集和权重,以生成一组视觉原始素。为了增强原始素的可区分性和可传递性,我们提出了基于图形循环网络的视觉原始相关推理网络(CRN),以学习原始人之间的丰富结构信息和内部相关性。最后,根据情节培训策略进行了一个原始级别的指标以在元任务中进行分类。广泛的实验表明,我们的方法在六个标准基准测试中实现了最新的结果。

Few-shot learning (FSL) aims to learn a classifier that can be easily adapted to recognize novel classes with only a few labeled examples. Some recent work about FSL has yielded promising classification performance, where the image-level feature is used to calculate the similarity among samples for classification. However, the image-level feature ignores abundant fine-grained and structural in-formation of objects that may be transferable and consistent between seen and unseen classes. How can humans easily identify novel classes with several sam-ples? Some study from cognitive science argues that humans can recognize novel categories through primitives. Although base and novel categories are non-overlapping, they can share some primitives in common. Inspired by above re-search, we propose a Primitive Mining and Reasoning Network (PMRN) to learn primitive-aware representations based on metric-based FSL model. Concretely, we first add Self-supervision Jigsaw task (SSJ) for feature extractor parallelly, guiding the model to encode visual pattern corresponding to object parts into fea-ture channels. To further mine discriminative representations, an Adaptive Chan-nel Grouping (ACG) method is applied to cluster and weight spatially and se-mantically related visual patterns to generate a group of visual primitives. To fur-ther enhance the discriminability and transferability of primitives, we propose a visual primitive Correlation Reasoning Network (CRN) based on graph convolu-tional network to learn abundant structural information and internal correlation among primitives. Finally, a primitive-level metric is conducted for classification in a meta-task based on episodic training strategy. Extensive experiments show that our method achieves state-of-the-art results on six standard benchmarks.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源