论文标题
Yang-Baxter的非障碍动力学变形$ \ text {ads} _ {4} \ times \ text {cp}^{3} $ superStrings
Non-chaotic dynamics for Yang-Baxter deformed $\text{AdS}_{4}\times \text{CP}^{3}$ superstrings
论文作者
论文摘要
我们探索了一个新颖的Yang-Baxter变形广告$ _ {4} $ $ \ times $ cp $^{3} $ backgrounds [jour。高能。物理。 \ textbf {01}(2021)056],它显示出(超级)字符串在其上传播的非差动力学。我们明确使用\ textit {kovacic的算法},以便在这些变形的背景上建立字符串$σ$模型的非差异动力学。该分析与数值技术相辅相成,从而探测这些(半)经典字符串的经典相位空间,并计算各种混乱指标,例如庞加莱段和Lyapunov指数。我们发现两种方法之间的兼容性。然而,我们的分析不能确保整合性。相反,它排除了给定的字符串嵌入的可能性。
We explore a novel class of Yang-Baxter deformed AdS$_{4}$ $\times$ CP$^{3}$ backgrounds [Jour. High Ener. Phys. \textbf{01} (2021) 056] which exhibit a non-chaotic dynamics for (super)strings propagating over it. We explicitly use the \textit{Kovacic's algorithm} in order to establish non-chaotic dynamics of string $ σ$ models over these deformed backgrounds. This analysis is complemented with numerical techniques whereby we probe the classical phase space of these (semi)classical strings and calculate various chaos indicators, such as, the Poincaré sections and the Lyapunov exponents. We find compatibility between the two approaches. Nevertheless, our analysis does not ensure integrability; rather, it excludes the possibility of non-integrability for the given string embeddings.