论文标题
关于计算图形离散的RICCI曲率:局部算法和(局部)细粒度还原
On computing Discretized Ricci curvatures of graphs: local algorithms and (localized) fine-grained reductions
论文作者
论文摘要
通过RICCI曲率表征高维物体的形状在数学和物理学的许多研究领域都起着至关重要的作用。但是,尽管数学家提出和研究了用于离散组合对象(例如网络)的RICCI曲率的几个离散化,但这些离散化的计算复杂性方面在很大程度上避免了理论计算机科学家的关注。在本文中,我们从通过细粒度减少和基于局部查询的算法进行有效计算的角度研究了一种这种离散化,即ollivier-Ricci曲率。我们的主要贡献是以下内容。 (a)我们将曲率计算问题与通过细粒度减少的完整两部分图上的最小重量匹配问题联系起来。 (b)我们在适当的框架中正式化曲率计算问题的计算方面,以便研究人员可以在本地算法中对其进行研究。 (c)我们在本地算法框架中针对基于查询的算法的查询提供了第一个已知的下限和上限。在途中,我们还说明了我们的细粒度减少的本地版本。 我们认为,我们的结果提出了一系列有趣的研究问题,这些研究问题在理论和实践中都引起了动机,这些研究问题是针对物体曲率设计有效的算法。
Characterizing shapes of high-dimensional objects via Ricci curvatures plays a critical role in many research areas in mathematics and physics. However, even though several discretizations of Ricci curvatures for discrete combinatorial objects such as networks have been proposed and studied by mathematicians, the computational complexity aspects of these discretizations have escaped the attention of theoretical computer scientists to a large extent. In this paper, we study one such discretization, namely the Ollivier-Ricci curvature, from the perspective of efficient computation by fine-grained reductions and local query-based algorithms. Our main contributions are the following. (a) We relate our curvature computation problem to minimum weight perfect matching problem on complete bipartite graphs via fine-grained reduction. (b) We formalize the computational aspects of the curvature computation problems in suitable frameworks so that they can be studied by researchers in local algorithms. (c) We provide the first known lower and upper bounds on queries for query-based algorithms for the curvature computation problems in our local algorithms framework. En route, we also illustrate a localized version of our fine-grained reduction. We believe that our results bring forth an intriguing set of research questions, motivated both in theory and practice, regarding designing efficient algorithms for curvatures of objects.