论文标题

nilpotent代数,隐式函数定理和多项式准群

Nilpotent algebras, implicit function theorem, and polynomial quasigroups

论文作者

Bahturin, Yuri, Olshanskii, Alexander

论文摘要

我们研究有限的非缔合代数。我们证明了此类代数的隐式函数定理。这使我们能够本着这种代数和准群之间的对应关系,本着可划分无扭转的nilpotent群体和合理的nilpotent lie代数的经典对应的精神。我们研究了Nilpotent群体的同源物的相关问题,丝状含有最大溶解度长度的代数和部分有序的代数。

We study finite-dimensional nonassociative algebras. We prove the implicit function theorem for such algebras. This allows us to establish a correspondence between such algebras and quasigroups, in the spirit of classical correspondence between divisible torsion-free nilpotent groups and rational nilpotent Lie algebras. We study the related questions of the commensurators of nilpotent groups, filiform Lie algebras of maximal solvability length and partially ordered algebras.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源