论文标题

材料科学与化学的图形神经网络

Graph neural networks for materials science and chemistry

论文作者

Reiser, Patrick, Neubert, Marlen, Eberhard, André, Torresi, Luca, Zhou, Chen, Shao, Chen, Metni, Houssam, van Hoesel, Clint, Schopmans, Henrik, Sommer, Timo, Friederich, Pascal

论文摘要

机器学习在化学和材料科学的许多领域都起着越来越重要的作用,例如预测材料特性,加速模拟,设计新材料并预测新材料的合成途径。图神经网络(GNN)是生长最快的机器学习模型之一。它们与化学和材料科学特别相关,因为它们直接在分子和材料的图或结构表示上工作,因此可以完全访问表征材料所需的所有相关信息。在这篇评论文章中,我们概述了GNN,广泛使用的数据集和最先进的体系结构的基本原理,然后讨论了GNN在化学和材料科学中的广泛应用,并以路线图进行了GNN的进一步开发和应用。

Machine learning plays an increasingly important role in many areas of chemistry and materials science, e.g. to predict materials properties, to accelerate simulations, to design new materials, and to predict synthesis routes of new materials. Graph neural networks (GNNs) are one of the fastest growing classes of machine learning models. They are of particular relevance for chemistry and materials science, as they directly work on a graph or structural representation of molecules and materials and therefore have full access to all relevant information required to characterize materials. In this review article, we provide an overview of the basic principles of GNNs, widely used datasets, and state-of-the-art architectures, followed by a discussion of a wide range of recent applications of GNNs in chemistry and materials science, and concluding with a road-map for the further development and application of GNNs.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源