论文标题
单体:模拟单眼3D对象检测的异质点云对象检测器的学习行为
MonoSIM: Simulating Learning Behaviors of Heterogeneous Point Cloud Object Detectors for Monocular 3D Object Detection
论文作者
论文摘要
对于许多应用程序,包括自动驾驶,机器人抓握和增强现实,单程3D对象检测是一项基本但非常重要的任务。现有的领先方法倾向于首先估算输入图像的深度,并基于点云检测3D对象。该例程遭受了深度估计和对象检测之间固有的差距。此外,预测误差积累也会影响性能。在本文中,提出了一种名为单苏姆的新方法。引入单苏姆的背后见解是,我们建议在训练期间模拟基于点云的探测器的特征学习行为。因此,在推理期间,学习的特征和预测将与基于点云的检测器相似。为了实现这一目标,我们建议一个场景级仿真模块,一个ROI级别的仿真模块和一个响应级仿真模块,这些模块逐渐用于检测器的完整特征学习和预测管道。我们将方法应用于著名的M3D-RPN检测器和CADDN检测器,并在Kitti和Waymo Open数据集上进行了广泛的实验。结果表明,我们的方法始终提高不同边距的不同单眼检测器的性能,而无需更改网络体系结构。我们的代码将在https://github.com/sunh18/monosim} {https://github.com/sunh18/monosim上公开获得。
Monocular 3D object detection is a fundamental but very important task to many applications including autonomous driving, robotic grasping and augmented reality. Existing leading methods tend to estimate the depth of the input image first, and detect the 3D object based on point cloud. This routine suffers from the inherent gap between depth estimation and object detection. Besides, the prediction error accumulation would also affect the performance. In this paper, a novel method named MonoSIM is proposed. The insight behind introducing MonoSIM is that we propose to simulate the feature learning behaviors of a point cloud based detector for monocular detector during the training period. Hence, during inference period, the learned features and prediction would be similar to the point cloud based detector as possible. To achieve it, we propose one scene-level simulation module, one RoI-level simulation module and one response-level simulation module, which are progressively used for the detector's full feature learning and prediction pipeline. We apply our method to the famous M3D-RPN detector and CaDDN detector, conducting extensive experiments on KITTI and Waymo Open datasets. Results show that our method consistently improves the performance of different monocular detectors for a large margin without changing their network architectures. Our codes will be publicly available at https://github.com/sunh18/MonoSIM}{https://github.com/sunh18/MonoSIM.