论文标题

3D可压缩流体的平滑爆内溶液

Smooth imploding solutions for 3D compressible fluids

论文作者

Buckmaster, Tristan, Cao-Labora, Gonzalo, Gómez-Serrano, Javier

论文摘要

基于开创性的工作[Merle,Raphaël,Rodnianski和Szeftel,Ann。数学,196(2):567-778,2022,Ann。数学,196(2):779-889,2022,发明。 Math。,227(1):247-413,2022]我们为所有绝热指数$γ> 1 $的理想气体构建精确,平滑的自相似溶解解决方案。对于特定情况,$γ= \ frac75 $(对应于双原子气体,例如氧气,氢,氮),类似于先前的结果,我们显示了一系列平滑,自相似的溶解溶液的存在。此外,我们还提供了简化的线性稳定性和非线性稳定性的证明,这使我们能够构建渐近自相似的溶解解决方案,以适用于可压缩的Navier-Stokes方程,该方程对$γ= \ frac75 $具有密度独立的粘度。此外,构造的溶液的密度从零界定并收敛到无穷大的常数,这是在这种情况下奇异性形成的第一个示例。

Building upon the pioneering work [Merle, Raphaël, Rodnianski, and Szeftel, Ann. of Math., 196(2):567-778, 2022, Ann. of Math., 196(2):779-889, 2022, Invent. Math., 227(1):247-413, 2022] we construct exact, smooth self-similar imploding solutions to the 3D isentropic compressible Euler equations for ideal gases for all adiabatic exponents $γ>1$. For the particular case $γ=\frac75$ (corresponding to a diatomic gas, e.g. oxygen, hydrogen, nitrogen), akin to the previous result, we show the existence of a sequence of smooth, self-similar imploding solutions. In addition, we provide simplified proofs of linear stability and non-linear stability, which allow us to construct asymptotically self-similar imploding solutions to the compressible Navier-Stokes equations with density independent viscosity for the case $γ=\frac75$. Moreover, the solutions constructed have density bounded away from zero and converge to a constant at infinity, representing the first example of singularity formation in such a setting.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源