论文标题
用于机器学习的非线性光学数据变压器
Nonlinear Optical Data Transformer for Machine Learning
论文作者
论文摘要
现代机器学习模型使用大型数据集使用越来越多的参数(GPT-3的1750亿参数)来获得更好的性能。更大的是常态。光学计算已被恢复为通过进行线性操作的同时降低电力的光学加速器的大规模计算的潜在解决方案。但是,要用光实现有效的计算,在光学上而不是电子上创建和控制非线性仍然是一个挑战。这项研究探讨了一种储层计算方法(RC)方法,通过该方法,在绝缘体上的Linbo3中14毫米长的几种模式波导被用作复杂的非线性光学处理器。数据集在飞秒脉冲的频谱上以数字方式编码,然后在波导中启动。输出频谱非线性取决于输入。我们在实验上表明,与未转换数据相比,使用波导的输出谱提高了几个数据库的分类精度,使用来自波导的输出频谱具有784个参数的简单数字线性分类器,约为10 $ \%$。相比之下,必须具有40000个参数的深数字神经网络(NN)才能达到相同的准确性。将参数的数量减少$ \ sim $ 50,这说明了紧凑的光RC方法可以与深数字NN一起执行。
Modern machine learning models use an ever-increasing number of parameters to train (175 billion parameters for GPT-3) with large datasets to obtain better performance. Bigger is better has been the norm. Optical computing has been reawakened as a potential solution to large-scale computing through optical accelerators that carry out linear operations while reducing electrical power. However, to achieve efficient computing with light, creating and controlling nonlinearity optically rather than electronically remains a challenge. This study explores a reservoir computing (RC) approach whereby a 14 mm long few-mode waveguide in LiNbO3 on insulator is used as a complex nonlinear optical processor. A dataset is encoded digitally on the spectrum of a femtosecond pulse which is then launched in the waveguide. The output spectrum depends nonlinearly on the input. We experimentally show that a simple digital linear classifier with 784 parameters using the output spectrum from the waveguide as input increased the classification accuracy of several databases compared to non-transformed data, approximately 10$\%$. In comparison, a deep digital neural network (NN) with 40000 parameters was necessary to achieve the same accuracy. Reducing the number of parameters by a factor of $\sim$50 illustrates that a compact optical RC approach can perform on par with a deep digital NN.