论文标题
锤子:通过利用错误结果的锤击行为来提高嘈杂的量子电路的保真度
HAMMER: boosting fidelity of noisy Quantum circuits by exploiting Hamming behavior of erroneous outcomes
论文作者
论文摘要
具有数百个Qubits的量子计算机即将提供。不幸的是,高设备误差率在使用这些近期量子系统来为现实世界的应用供电方面构成了重大挑战。在现有量子系统上执行程序会产生正确和错误的结果,但是通常,输出分布太嘈杂了,无法区分它们。在本文中,我们表明错误的结果不是任意的,但是在锤子空间中表示时表现出明确的结构。我们在IBM和Google量子计算机上的实验表明,最常见的错误结果更有可能在锤子空间中接近正确的结果。我们利用这种行为来提高推断正确结果的能力。 我们提出了Hamming重建(Hammer),这是一种后处理技术,利用锤击行为的观察来重建嘈杂的输出分布,因此所产生的分布具有更高的保真度。我们使用来自Google和IBM量子计算机的实验数据评估Hammer,该计算机具有500多个独特的量子电路,并在解决方案质量中平均提高了1.37倍。在Google公开可用的QAOA数据集上,我们表明锤子在成本函数景观上的梯度提高了。
Quantum computers with hundreds of qubits will be available soon. Unfortunately, high device error-rates pose a significant challenge in using these near-term quantum systems to power real-world applications. Executing a program on existing quantum systems generates both correct and incorrect outcomes, but often, the output distribution is too noisy to distinguish between them. In this paper, we show that erroneous outcomes are not arbitrary but exhibit a well-defined structure when represented in the Hamming space. Our experiments on IBM and Google quantum computers show that the most frequent erroneous outcomes are more likely to be close in the Hamming space to the correct outcome. We exploit this behavior to improve the ability to infer the correct outcome. We propose Hamming Reconstruction (HAMMER), a post-processing technique that leverages the observation of Hamming behavior to reconstruct the noisy output distribution, such that the resulting distribution has higher fidelity. We evaluate HAMMER using experimental data from Google and IBM quantum computers with more than 500 unique quantum circuits and obtain an average improvement of 1.37x in the quality of solution. On Google's publicly available QAOA datasets, we show that HAMMER sharpens the gradients on the cost function landscape.