论文标题

毕竟,阴影并不那么危险:针对基于影子的对抗攻击的快速而强大的防御

Shadows Aren't So Dangerous After All: A Fast and Robust Defense Against Shadow-Based Adversarial Attacks

论文作者

Wang, Andrew, Mayor, Wyatt, Smith, Ryan, Nookula, Gopal, Ditzler, Gregory

论文摘要

在自主车辆标志识别之类的任务中,强大的分类至关重要,因为错误分类的弊端可能是严重的。对抗性攻击威胁着神经网络分类器的鲁棒性,导致它们始终如一,自信地误导了道路标志。一种这样的攻击类别,基于阴影的攻击,通过在输入图像中应用自然的阴影来引起错误的认识,从而导致人类观察者看起来很自然,但对这些分类器感到困惑。当前针对此类攻击的防御措施采用了简单的对抗训练程序,分别在GTSRB和LISA测试集上实现了相当低的25 \%和40 \%的鲁棒性。在本文中,我们提出了一种健壮,快速且可推广的方法,旨在在道路标志识别的背景下防御阴影攻击,以增强具有二进制自适应阈值和边缘图的源图像。我们从经验上表明了它针对影子攻击的稳健性,并重新制定了与$ \ varepsilon $基于基于扰动的攻击相似的问题。实验结果表明,我们的边缘防御能力达到78 \%的鲁棒性,同时在GTSRB测试集上保持98 \%良性测试精度,这与我们的阈值防御相似。链接到我们的代码是在论文中。

Robust classification is essential in tasks like autonomous vehicle sign recognition, where the downsides of misclassification can be grave. Adversarial attacks threaten the robustness of neural network classifiers, causing them to consistently and confidently misidentify road signs. One such class of attack, shadow-based attacks, causes misidentifications by applying a natural-looking shadow to input images, resulting in road signs that appear natural to a human observer but confusing for these classifiers. Current defenses against such attacks use a simple adversarial training procedure to achieve a rather low 25\% and 40\% robustness on the GTSRB and LISA test sets, respectively. In this paper, we propose a robust, fast, and generalizable method, designed to defend against shadow attacks in the context of road sign recognition, that augments source images with binary adaptive threshold and edge maps. We empirically show its robustness against shadow attacks, and reformulate the problem to show its similarity to $\varepsilon$ perturbation-based attacks. Experimental results show that our edge defense results in 78\% robustness while maintaining 98\% benign test accuracy on the GTSRB test set, with similar results from our threshold defense. Link to our code is in the paper.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源