论文标题

通过重力脱钩的相对论各向异性多型的巷道方程的整合:一种新方法

Integration of the Lane-Emden equation for relativistic anisotropic polytropes through Gravitational Decoupling: a novel approach

论文作者

Santana, D., Fuenmayor, E., Contreras, E.

论文摘要

在这项工作中,我们提出了一种新颖的方法,以整合相对论各向异性多层性的车道填充方程。我们利用了一个事实,即重力脱钩可以减少自由度的数量,一旦提供了一个已知的爱因斯坦田间方程的解决方案作为种子,因此在要求径向压力的多层压方程后,系统自动关闭。该方法不仅可以扩展各向异性或各向异性已知的解决方案,而且只要考虑到最小的几何变形,就可以简化托尔曼质量的计算。我们通过分析从Tolman IV,Durgapal IV和Wymann IIA各向同性系统作为集成的种子来说明该方法的工作方式。

In this work we propose a novel approach to integrate the Lane-Emden equations for relativistic anisotropic polytropes. We take advantage of the fact that Gravitational Decoupling allows to decrease the number of degrees of freedom once a well known solution of the Einstein field equations is provided as a seed so after demanding the polytropic equation for the radial pressure the system is automatically closed. The approach not only allows to extend both isotropic or anisotropic known solutions but simplifies the computation of the Tolman mass whenever the Minimal Geometric Deformation is considered given that the $g_{tt}$ component of the metric remains unchanged. We illustrate how the the method works by analyzing the solutions obtained from Tolman IV, Durgapal IV and Wymann IIa isotropic systems as a seed for the integration.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源