论文标题
基于对抗性学习的结构性脑网络生成模型,用于分析轻度认知障碍
Adversarial Learning Based Structural Brain-network Generative Model for Analyzing Mild Cognitive Impairment
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
Mild cognitive impairment(MCI) is a precursor of Alzheimer's disease(AD), and the detection of MCI is of great clinical significance. Analyzing the structural brain networks of patients is vital for the recognition of MCI. However, the current studies on structural brain networks are totally dependent on specific toolboxes, which is time-consuming and subjective. Few tools can obtain the structural brain networks from brain diffusion tensor images. In this work, an adversarial learning-based structural brain-network generative model(SBGM) is proposed to directly learn the structural connections from brain diffusion tensor images. By analyzing the differences in structural brain networks across subjects, we found that the structural brain networks of subjects showed a consistent trend from elderly normal controls(NC) to early mild cognitive impairment(EMCI) to late mild cognitive impairment(LMCI): structural connectivity progressed in a progressively weaker direction as the condition worsened. In addition, our proposed model tri-classifies EMCI, LMCI, and NC subjects, achieving a classification accuracy of 83.33\% on the Alzheimer's Disease Neuroimaging Initiative(ADNI) database.