论文标题

logkernel基于行为出处图和图内核心聚类的威胁狩猎方法

LogKernel A Threat Hunting Approach Based on Behaviour Provenance Graph and Graph Kernel Clustering

论文作者

Li, Jiawei, Zhang, Ru, Liu, Jianyi, Liu, Gongshen

论文摘要

网络威胁狩猎是组织信息系统中隐藏威胁的积极搜索过程。它是针对先进持续威胁(APTS)积极防御的关键组成部分。但是,当前的大多数威胁狩猎方法都依赖于网络威胁智能(CTI),这些智能(CTI)可以找到已知的攻击,但找不到CTI尚未披露的未知攻击。在本文中,我们提出了LogKernel,这是一种基于图内核聚类的威胁狩猎方法,可以有效地将攻击行为与良性活动分开。 LogKernel首先将系统审核登录到行为出处图(BPG)中,然后通过使用图内的核心将它们嵌入连续空间,然后将图形插入。特别是,我们根据BPG的特性设计了一种新的图内核聚类方法,该方法可以捕获BPG的结构信息和丰富的标签信息。为了减少误报,LogKernel进一步量化了异常行为的威胁。我们在恶意数据集中评估了LogKernel,其中包括七个模拟攻击方案和DAPRA Cadets数据集,其中包括四种攻击方案。结果表明,logkernel可以在其中捕捉所有攻击方案,并且与最先进的方法相比,它可以找到未知的攻击。

Cyber threat hunting is a proactive search process for hidden threats in the organization's information system. It is a crucial component of active defense against advanced persistent threats (APTs). However, most of the current threat hunting methods rely on Cyber Threat Intelligence(CTI), which can find known attacks but cannot find unknown attacks that have not been disclosed by CTI. In this paper, we propose LogKernel, a threat hunting method based on graph kernel clustering which can effectively separates attack behaviour from benign activities. LogKernel first abstracts system audit logs into Behaviour Provenance Graphs (BPGs), and then clusters graphs by embedding them into a continuous space using a graph kernel. In particular, we design a new graph kernel clustering method based on the characteristics of BPGs, which can capture structure information and rich label information of the BPGs. To reduce false positives, LogKernel further quantifies the threat of abnormal behaviour. We evaluate LogKernel on the malicious dataset which includes seven simulated attack scenarios and the DAPRA CADETS dataset which includes four attack scenarios. The result shows that LogKernel can hunt all attack scenarios among them, and compared to the state-of-the-art methods, it can find unknown attacks.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源