论文标题

神经自适应边界力控制双重单链柔性手臂,具有未模拟的动力学和输入约束

Neuro-Adaptive Boundary Force Control of Dual One-Link Flexible Arms with Unmodeled Dynamics and Input Constraints

论文作者

Hejrati, Mahdi

论文摘要

本文的主要目的是通过双重单链接灵活的操纵器来完成安全的掌握任务。为了设计无力传感器的力控制,直接的力控制问题将减少为通用运动控制问题,通过满足新的控制目标,建立了掌握任务。之后,这是双链柔性操纵器领域的第一次,将智能控制方法与强大的控制方法结合在一起,以; i)实现运动控制目标,ii)处理系统中的不确定性,iii)考虑未知的混合输入约束,导致NABFC(神经自动边界力控制)。此外,要处理未知模型的不确定性以及未知的输入饱和度和死区,使用了径向基本功能神经网络(RBFNN)。以同样的方式,自适应控制被用于估计未知参数。通过利用Lyapunov的直接方法,将适当的Lyapunov功能和能量乘数方法定义为表达众所周知但强大的稳定性程序,从而补偿了先前工作中提出的复杂稳定性程序。在设计控制器的情况下,提出的稳定性过程导致系统的统一最终界限(UUB)稳定性。最后,为了在设计控制器与其他控制器之间进行比较,数值分析用于证明所提出的控制器的出色性能和稳定性分析结果的正确性。

The primary purpose of this article is to accomplish safe grasping task by means of dual one-link flexible manipulators. In order to design a force-sensor-less force control, the direct force control problem is reduced to common motion control problem, in a way that by satisfying new control objectives the grasping task is established. Afterwards, for the first time in the field of dual one-link flexible manipulators, intelligent control methods are combined with robust control approaches in an effort to; i) accomplish motion control objectives, ii) handle uncertainties in the system, and iii) consider unknown, mixed input constraints, resulting in NABFC (Neuro-Adaptive Boundary Force Control). Moreover, to deal with unknown model uncertainties as well as unknown input saturation and dead zones, Radial Basic Function Neural-Networks (RBFNNs) are used. In the same way, adaptive control is utilized to estimate unknown parameters. By exploiting Lyapunov's direct method, proper Lyapunov functional and Energy multiplier method are defined to express well-known yet strong stability procedure, which compensates a complex stability procedure proposed in the previous works. In the presence of the designed controller, the presented stability procedure resulted in a uniform ultimate boundedness (UUB) stability for the system. Finally, for comparison aim between the designed controller with other controllers, numerical analysis is used to demonstrate both the excellent performance of the proposed controller and the correctness of the stability analysis outcomes.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源