论文标题

TSCOM-NET:粗到五的3D纹理形状完成网络

TSCom-Net: Coarse-to-Fine 3D Textured Shape Completion Network

论文作者

Karadeniz, Ahmet Serdar, Ali, Sk Aziz, Kacem, Anis, Dupont, Elona, Aouada, Djamila

论文摘要

从3D部分纹理扫描中重建3D人体形状仍然是许多计算机视觉和图形应用程序的基本任务 - 例如,身体动画和虚拟敷料。我们为3D身体形状和高分辨率纹理完成(BCOM-net)提出了一种新的神经网络体系结构,该架构可以重建从中级到高级部分输入扫描的完整几何形状。我们将整个重建任务分解为两个阶段 - 首先,一个联合隐式学习网络(SCOM-NET和TCOM-NET),该网络将进行体素化扫描及其占用网格作为重建全身形状并预测顶点纹理的输入。其次,一个高分辨率的纹理完成网络,利用预测的粗顶纹理将部分“纹理地图集”的部分涂成分配。对3DBodyTex.V2数据集进行了彻底的实验评估表明,我们的方法相对于最新的艺术品获得了竞争成果,同时概括了不同类型和部分形状的水平。所提出的方法还从部分纹理的3D扫描([38,1])2022 Challenge 1中排名第1位。

Reconstructing 3D human body shapes from 3D partial textured scans remains a fundamental task for many computer vision and graphics applications -- e.g., body animation, and virtual dressing. We propose a new neural network architecture for 3D body shape and high-resolution texture completion -- BCom-Net -- that can reconstruct the full geometry from mid-level to high-level partial input scans. We decompose the overall reconstruction task into two stages - first, a joint implicit learning network (SCom-Net and TCom-Net) that takes a voxelized scan and its occupancy grid as input to reconstruct the full body shape and predict vertex textures. Second, a high-resolution texture completion network, that utilizes the predicted coarse vertex textures to inpaint the missing parts of the partial 'texture atlas'. A thorough experimental evaluation on 3DBodyTex.V2 dataset shows that our method achieves competitive results with respect to the state-of-the-art while generalizing to different types and levels of partial shapes. The proposed method has also ranked second in the track1 of SHApe Recovery from Partial textured 3D scans (SHARP [38,1]) 2022 challenge1.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源