论文标题

材料加速平台的物理计算

Physical Computing for Materials Acceleration Platforms

论文作者

Peterson, Erik, Lavin, Alexander

论文摘要

“技术彩票”描述了一种研究思想或技术,因为它适合可用的软件和硬件,而不一定是因为它优于替代方向 - 从深度学习和GPU的协同效应到城市设计和自动驾驶汽车的脱节。自动驾驶实验室(SDL)的新生领域,尤其是作为材料加速平台(MAP)实施的领域,面临着类似的陷阱的风险:构建地图的下一个逻辑步骤是采用现有的实验室设备和工作流并混合一些AI和自动化。在此白皮书中,我们认为,作为地图研究计划的一部分,可以加速搜索新材料的相同的模拟和AI工具也使得设计了根本新的计算媒体的设计。我们不必受到科学,机电一体化和通用计算的现有偏见的限制,而是我们可以通过网络物理学习和闭环,自我优化系统来追求工程物理学的新向量。在这里,我们概述了一个基于仿真的地图程序来设计使用物理本身来解决优化问题的计算机。这样的系统减轻了其他每类地图中存在的硬件软件 - 材料用户信息损失,并且它们在计算问题和计算介质之间的完美对齐消除了任何技术彩票。我们提供了迈向早期“物理计算(PC)-MAP”进步的具体步骤,以及我们希望在材料研究人员和计算机科学家之间引入创新合作的新时代。

A ''technology lottery'' describes a research idea or technology succeeding over others because it is suited to the available software and hardware, not necessarily because it is superior to alternative directions--examples abound, from the synergies of deep learning and GPUs to the disconnect of urban design and autonomous vehicles. The nascent field of Self-Driving Laboratories (SDL), particularly those implemented as Materials Acceleration Platforms (MAPs), is at risk of an analogous pitfall: the next logical step for building MAPs is to take existing lab equipment and workflows and mix in some AI and automation. In this whitepaper, we argue that the same simulation and AI tools that will accelerate the search for new materials, as part of the MAPs research program, also make possible the design of fundamentally new computing mediums. We need not be constrained by existing biases in science, mechatronics, and general-purpose computing, but rather we can pursue new vectors of engineering physics with advances in cyber-physical learning and closed-loop, self-optimizing systems. Here we outline a simulation-based MAP program to design computers that use physics itself to solve optimization problems. Such systems mitigate the hardware-software-substrate-user information losses present in every other class of MAPs and they perfect alignment between computing problems and computing mediums eliminating any technology lottery. We offer concrete steps toward early ''Physical Computing (PC) -MAP'' advances and the longer term cyber-physical R&D which we expect to introduce a new era of innovative collaboration between materials researchers and computer scientists.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源