论文标题

从微观SDE到随机宏观方程:建模癌症和其他复杂生活系统多样性的框架

From Microscopic SDE to Stochastic Macroscopic Equation: A Framework for Modeling Diversity in Cancer and Other Complex Living Systems

论文作者

Hiremath, Sandesh Athni

论文摘要

一般的生物生活系统表现出复杂而多样的动态。尤其是后者是必不可少的,因为多样化增加了生物体生存的几率,同时降低了人口灭绝的风险。主要是,多样化是生物细胞复制过程中随机性的结果,该复制过程最终表现为一个个体的一组宏观特征。个人的这些异质特征构成人口多样性。癌症是这样一个复杂系统的一个主要例子,在该系统中,转化的细胞表现出许多不同的特征,这又使建模其动力学非常具有挑战性。在本文中,我们将癌症视为复杂生活系统的原型,并为研究和建模提供了两个对比的观点。基于此,我们非法在癌症进化中具有更深的多样化作用。之后,我们问自己如何在多尺度环境中对这些不同的动态进行建模。我们通过提供一个抽象但数学上严格的框架来解决现有的多尺度建模技术的缺点,以从涉及动力学的微观描述开始,从而在宏观级别上推论宏观级别的随机演变方程。我们通过利用随机过程与它们生成的半群操作员之间的连接来实现这一目标。特别是,我们查看征费过程产生的半群及其与特征函数和征收符号的联系。后者事实证明,我们使用伪分化的运算符,我们最终提供了一种构建随机进化方程的机制。总的来说,这为从微观镜头开始在宏观上建模各种动力学提供了建模的框架。

Biological living systems in general exhibit complex and diverse dynamics. The latter, in particular, is essential, since diversification increases the odds of survival of an organism while reducing the risk of extinction of the population. Primarily, diversification is a consequence of the randomness in the replication process of a biological cell, which eventually manifests into a motley set of macroscopic features of an individual. These heterogeneous features of individuals constitutes for diversity in population. Cancer is a prime example of such a complex system where the transformed cells exhibit plethora of disparate features, which in turn makes modeling their dynamics quite challenging. In this paper we consider cancer as a prototype of a complex living system and provide two contrasting perspective for studying and modeling it. Based on this we illicit a deeper role of diversification in the evolution of cancer. Following this, we ask ourselves how can we model these diverse dynamics in a multiscale setting. We address the shortcoming of the existing multiscale modeling technique by providing an abstract but mathematically rigorous framework for deducing stochastic evolution equations at the macroscopic level starting from a microscopic description of the involved dynamics. We achieve this by making use of the connection between stochastic process and the semigroup operator generated by them. In particular, we look at the semigroups generated by Levy processes and their connection with the characteristic functions and Levy symbols. The latter turns out to represent pseudo-differential operators using which we eventually provide a mechanism for constructing stochastic evolution equations. Altogether, this provides the framework for modeling diverse dynamics at the macroscale starting from the microscale.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源