论文标题

每个图最终都很好

Every graph is eventually Turán-good

论文作者

Morrison, Natasha, Nir, JD, Norin, Sergey, Rzążewski, Paweł, Wesolek, Alexandra

论文摘要

令$ h $为图。我们表明,如果$ r $作为$ h $的函数足够大,则$ r $ - 明确的turán图可以最大化所有$ k_ {r+1} $中$ h $的副本数 - 在给定数量的顶点上的免费图。这证实了Gerbner和Palmer的猜想。

Let $H$ be a graph. We show that if $r$ is large enough as a function of $H$, then the $r$-partite Turán graph maximizes the number of copies of $H$ among all $K_{r+1}$-free graphs on a given number of vertices. This confirms a conjecture of Gerbner and Palmer.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源